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Abstract

A dynamic instability, called parametric resonance, is exhibited by
undamped elastic beam-columns when under the action of pulsat-
ing axial force. The scope of the existing theory of parametric
resonance is restricted to physically linear beam-columns undergo-
ing finite lateral displacements. In this Paper, the dynamic behav-
iour of physically nonlinear elastic cracked concrete beam-columns
under pulsating axial force and constant lateral force is investigat-
ed. The constitutive equations derived earlier by Authors in the
form of force-displacement relations are employed here to formu-
late equations of motion of the SDOF cantilever with mass lumped
at its free end. The expected phenomenon of parametric resonance
is exhibited in the form of regular subharmonic resonance at about
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1 INTRODUCTION

Euler method of carrying out stability analysis of structures involves establishing alternate states of
static equilibrium adjacent to the given equilibrium state. This method is known to be equivalent to
the energy methods, like the method of minimum potential energy, for the determination of the
critical loads. Obviously, the validity of these two methods is restricted to those mechanical systems
for which the strain energy exists as a unique function of the state variables. Such is the case of
conservative structures, i.e., the structure under the action of conservative loads. The problem of
stability analysis of nonconservative structures cannot be solved using these methods. For example,
Euler method predicts infinitely high value of the critical load for a column under the action of a
tangential follower load. Methods of dynamic stability analysis have to be used to investigate the
stability of such nonconservative mechanical systems. Their loss of dynamic stability occurs at defi-
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nite critical values of the loads by a phenomenon called flutter (Bazant and Cedolin, 2010; Bolotin,
1964; Chen and Atsuta, 1976; Leipholz, 1976).

Parametric resonance is another type of dynamic instability suffered by columns and beam-
columns with distributed mass and under pulsating axial forces. For such structures undergoing
finite lateral displacements, the lateral stiffness depends upon the magnitude of the axial force.
Temporal variation of the axial force results in the corresponding variation of the stiffness parame-
ter of the system. Under periodic forcing, a resonance-like phenomenon is expected to occur. For
example, for an undamped pinned-pinned elastic column with distributed mass, such parametric
resonance is known to occur when the forcing frequency is twice its natural frequency. Even an in-
finitesimally small magnitude of peak sinusoidal axial force can also destabilize the system. For
damped structures, such dynamic instability occurs only at sufficiently high peak sinusoidal axial
force, even though the system is rendered vulnerable to parametric resonance at wider range of fre-
quency ratios. Energy audit of the system under pulsating load provides an explanation for the phe-
nomenon of parametric resonance. Dynamic instability of these structures is associated with the
unbounded solutions of the Mathieu-Hill type second order partial differential equation of motion
with time-dependent coefficients (Bazant and Cedolin, 2010; Kounadis and Belbas, 1977).

Concrete structures are known to be cracked in axio-flexural tension even under service loads.
The flexural rigidity of framed column sections depends upon the ratio of the flexural moment to
the axial force. Thus, the cracked concrete sections, members and structures are physically nonline-
ar mechanical systems. In contrast, the existing theory of elastic columns and beam-columns is
based upon the assumption of their physical linearity. Static and dynamic stability of such nonlinear
elastic beam-columns under conservative loads (Sharma, Singh and Benipal, 2012a, 2012b) and un-
der tangential follower load (Sharma, Singh and Benipal, 2013) has recently been investigated by
the Authors. With the intention of obviating the need to incorporate the inelasticity associated with
crack formation, the concrete beam-columns are assumed by Authors to be fully cracked a priori.
Their physical nonlinearity is associated with the closing and reopening of the extant cracks. To the
best of Authors’ knowledge, dynamic stability of concrete beam-columns has not yet been investi-
gated (Chopra, 1998; Dutta, 2010; Hoyer and Hansen, 2002).

The objective of the present Paper is to investigate the phenomenon of parametric resonance of
fully cracked flanged concrete beam-column under pulsating axial load in the presence of some con-
stant lateral load. The beam-column is in the form of a massless vertical cantilever with mass
lumped at its free end. Following existing theories, beam-columns undergoing finite lateral dis-
placements but small rotations are studied. The physically linear beam-columns undergoing small
lateral displacements are not expected to exhibit parametric resonance phenomenon. However, the
lateral stiffness of the physically nonlinear elastic concrete beam-columns also does depend upon the
axial force. In view of this, their dynamic behaviour under pulsating axial force is explored as well.
The theoretical significance and the practical relevance of the Paper are also discussed.

2 FINITE AMPLITUDE LATERAL VIBRATIONS

Consider a vertical flanged concrete cantilever, as shown in Fig.1, undergoing finite lateral dis-
placements ‘w’ under axial load P and lateral load Qy. The following expression for the lateral stiff-
ness K of the expressions for the completely uncracked structures has been derived earlier by the
Authors (Sharma, Singh and Benipal, 2012a).
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Figure 1: Concrete beam-column. Figure 2: P-w curves for constant lateral force.
k4P
=—1 P (1)
tank;L-k;L
When the structure is partly cracked, the expression for K turns out to be
Q koPZy
K=== 2
w o (CE (2)

( = Ytank, (L-g)+Z,—k,L Z;

Here, subscripts 1 and 2 refer to the uncracked and cracked sections. The symbols I and r denote
the section moment of inertia and the distance of the centroid from the compression face respective-

ly. Here, k; = /Elll , ky,= /EL;Z and I, = BI;. The length of gof the cracked segment depends

upon the loads P and Q as per the following relation:

_ PkinyZy
Q= tank,; (L — g)

Z, = cos k,g — VBsink,g tank, (L — g)

Z, = sink,g + VBcos k,g tank; (L — g) (3)
The cracking load Q. is given by ;:%. Static and dynamic stability of such cracked concrete beam-
1

columns is investigated in detail and reported elsewhere (Sharma, Singh and Benipal, 2012a, 2012b).
Here, for ready reference, certain characteristic aspects of their static stability are presented in Fig.
2 in the form of P —w curves for different constant values of Q. This study pertains to concrete
beam-columns with following specific details:

Length: 20m M = 450000 kg E. = 25000N/mm?
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[; =1.6167 X 10*3* mm* B = 0.18006

The two critical values each for the axial and lateral loads turn out to be as follows:
P..1 = 2.4885 X 10° kN P.;, = BP.; = 4.4808 X 10° kN

Qcr1 = 59897.65 kN Qerz = 78553.7 kN

For the partly cracked concrete beam-columns, the lateral stiffness is known to depend upon both
the axial load and the lateral load (or equivalently on lateral displacement). As the axial load
reaches either of the two critical loads, P..; and P..,, the stiffness vanishes. Such also is the case
when, for P.., < P < P4, the lateral displacement reaches a limited value wy,.

For Q < Q¢pq1, the lateral displacement first decreases with increase in axial load before it start
increasing with further increase in axial load. The P — w curve shows a maximum axial load Py,
and a post peak response. In contrast, where Q¢ < Q < Q¢p2, the lateral displacement asymptoti-
cally reaches infinitely high values as axial load reaches P.,. In addition, another segment of P —w
curve lying between Py, and P,y is predicted in the form of a closed loop for Py < P < Ppq. In
both the cases, two equilibrium lateral displacements are admissible for some specific sets of axial
and lateral loads. For P, < P < P..q, the lateral stiffness vanishes as a certain value w, given by
ry + ry(seck, g — 1) of lateral displacement is reached.

The massless beam-column carries a lumped mass M at its free end. The following equation of
motion is derived for these SDOF structures with damping ratio & (Sharma, Singh and Benipal,
2012b).

Mw + C(HW + K(H)w = Q, C(t) = &/MK(b) (4)

Here, K(t) and C(t) represent the instantaneous values of stiffness and damping coefficients. The
beam-column is under the action of a constant lateral load Q, and a pulsating axial force P(t) giv-
en as Py + P sin w¢t. The symbols Py and P, denote the constant component and the peak sinusoidal
component respectively and w¢ is the forcing frequency. Irrespective of the presence or extent of
cracking, the lateral stiffness K of the concrete beam-columns undergoing finite lateral displacements
depends upon the axial force and so on time. In the absence of cracking, the lateral force does not
affect the stiffness. For cracked beam-columns, both the lateral and axial forces affect the lateral
displacement as well as stiffness. In statics, it is the magnitude of the applied lateral force Q, that is
relevant. For beam-columns executing lateral vibrations, it is the net lateral force Q which deter-
mines the stiffness. Its instantaneous value is determined as

Q) = Qo — Mw — Cw (5)

For plotting the frequency domain response, the frequency ratio ry is the ratio of the forcing fre-
quency (wf) to the equilibrium state natural frequency (w,) corresponding to the sustained load set
(Py, Qo). Frequency domain response of the concrete beam-columns is determined for different values
of Py relative to P.rq, Pera, Pmin and Ppax for constant Qo and for different values of P; relative to P,.

. P L . .
Here, o represents the ratio P—t. The effect of presence and level of damping is also investigated.
0

Particular concrete beam-columns (B =1) are indistinguishable from conventional beam-
columns. The frequency domain response expected from such beam-columns under constant lateral
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Figure 3: Frequency domain response at B = 1 for small and large deformations.
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Figure 4: Time domain

response at fundamental and subharmonic resonance peaks (B = 1).
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Figure 5: Typical time and phase response at fundamental resonance peak (B = 1,r¢ = 1.994).

force is shown in Fig. 3. For the particular chosen magnitudes of Qq, Py and P, the parametric reso-
nance is predicted to occur at frequency ratios of 0.997 and 1.994. For vanishing Q, and P, and
small P, the corresponding frequency ratios are 1 and 2 respectively. It is well known that the T2
regular subharmonic resonance corresponds to a wave number, n, (ratio of forcing frequency to re-
sponse frequency) of two. Thus, the phenomenon of parametric resonance occurs in the form of T2
regular subharmonic resonance.

From the displacement waveforms in Fig. 4 obtained at the resonance frequencies in the present
case, the vibration amplitudes can be observed to increase with time in an unbounded manner.
Thus, the dynamic instability at parametric resonance is of divergence type. Fig. 5 depicts the tem-
poral variation of w, P and K as well as phase plot for a very short duration at frequency ratio of
1.994. The variation of lateral stiffness is synchronous with that of axial force. The parametric reso-
nance at this frequency is in fact a subharmonic resonance (wave number, n=2). In contrast, the
parametric resonance not shown here at frequency ratio of 0.997 is fundamental resonance.

The dynamic response of concrete beam-columns under constant lateral force and pulsating axial
force depends upon their corresponding static axial force-lateral displacement (P —w) curves shown
in Fig. 2. Here, the response under pulsating axial force is investigated for the following different
combinations of P, and Q:

Py = 4500kN « P.., and Qo = Q.

Py = 0.9F;, and Qo = Q.

Py = 0.65Pcrl = P, and Qg = 72000kN

Pmin < Py = 0.45Pcrl < Py, and Qg = 72000kN

e T

Frequency domain response of undamped concrete beam-columns is shown in Fig. 6 for different
values of the parameter o (0.01, 0.1, 0.25, 0.5. 0.75, 1). The magnitudes of constant axial and lateral
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forces are 4500kN (Py << P,.,) and Q. respectively and correspond to the equilibrium lateral dis-
placement as 0.003317 m. This equilibrium displacement is chosen as the initial displacement. The
natural frequency w, of small vibrations about the equilibrium state is estimated as 18.32 rad/s. At
all a, the frequency domain plots exhibit both fundamental and subharmonic resonances. Only one
regular subharmonic resonance peak is predicted for some values of a (0.25, 0.5, 0.75) while many
such peaks appear in frequency domain plots of other values of a.

In all the cases, many irregular subharmonic peaks appear with increase in «, the system experi-
ences large excursions away from the equilibrium state. Though not shown here, the lateral stiffness
has been predicted earlier by the Authors to decrease with increase in lateral displacements (Shar-
ma, Singh and Benipal, 2013). Thus, the stiffness of the vibrating structures is expected to vary
with time. The frequency ratios and peak amplitudes corresponding to the fundamental and various
subharmonic resonances for different a are presented in Table 1. The fundamental and the T2 regu-
lar subharmonic resonance frequencies are predicted to decrease with increase in a. As expected, the
corresponding irregular subharmonic resonance frequencies also register a decrease. Also, these reso-
nance peaks are observed to occur to a broader range of frequency ratios with increase in a. This
observation is substantiated in Fig. 7 where the range of the frequency ratios for fundamental and
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Figure 6: Effect of magnitude of pulsating load.
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Fundamental Peak

Regular subharmonics

Irregular subharmonics
o i w (m) i w(m) i,
0.01 0.866 0.00348 1.856 0.003332 0.157, 0.236, 0.312, 0.456
0.1 0.789 0.006092 1.719 0.004561 0.2, 0.235, 0.30, 0.363, 0.416
0.25 0.663 0.0193 1.543 0.007278 0.141, 0.2, 0.26, 0.377
0.5 0.595 0.03467 1.414 0.0138 0.127, 0.149, 0.182, 0.236, 0.34
0.75 0.553 0.05014 1.346 0.02374 0.145, 0.174, 0.224, 0.264, 0.319,
0.421
1.0 0.529 0.06531 1.248 0.04467 0.024, 0.171, 0.218, 0.415, 0.306
Table 1: Resonance frequency ratios and amplitudes.
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Figure 7: Ranges of parametric resonance frequencies for finite deformations.
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regular T2 subharmonic resonance is presented. For a particular case (a = 0.5), the waveforms for
P, w and K alongwith phase plot for the fundamental resonance are shown in Fig. 8. The response
frequency equals the forcing frequency. The temporal variation of lateral stiffness is more complex.
As the lateral displacement changes sense in every cycle, the stiffness changes twice. The displace-
ment waveform lags behind that of axial force. The regular subharmonic resonance response pre-
sented in Fig. 9 shows forcing frequency to be double the response frequency (wave number, n=2).

To recapitulate, P.;; and P, represent the Euler critical loads for the uncracked and fully
cracked concrete beam-columns respectively. When the axial force P, approaches P..,, the system
response depends considerably on Q. The predicted effect of a on the frequency domain response in
one such case (Py = 0.9P., and Qo = Q) is presented in Fig. 10. Apart from fundamental resonance
peak, one regular subharmonic peak and many irregular subharminc peaks are observed. Increase in
o results in shifting and broadening of resonance peaks in a manner similar to that discussed earlier
Py << Pepy.

For a particular value (72000kN) of Qg in the range Qcr1 < Q < Qerz, the Ppay and Py, turn out
to be 0.65P.; and 0.34P,.;. These values represent the demarcation between statically and
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Figure 8: Typical time and phase response at fundamental peak (B = 0.18006,r¢ = 0.594).
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Figure 9: Typical time and phase response at subharmonic peak (B = 0.18006,r; = 1.414).
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Figure 10: Effect of magnitude of pulsating load on frequency domain response ( P = 0.9P.,, Q << Qc¢pp)-
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Figure 11: Typical divergence phenomenon at rg = 1, P = 0.65P.4.
stable and unstable regions. In one such case (Py = 0.65P..; and r¢ = 1), the concrete beam- col-
umns under pulsating axial force exhibit dynamic instability by divergence as shown in Fig. 11.
This displacement waveform and the corresponding phase plot imply on unbounded increase in the
lateral displacement and velocity with time. Correspondingly, the lateral stiffness can be observed to
decrease with increase in lateral displacement.
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Figure 12: Frequency domain response for P,y < P = 0.45P.; > Pyip.
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When the concrete beam-columns happen to be in the stable regime (P, = 0.45P,; and
Qo = 72000KkN), the frequency domain response plotted in Fig. 12 exhibits one regular (ry = 1.993)
and one irregular subharmonic resonance (ry= 0.499) apart from the fundamental resonance
(re = 0.905). In contrast to the quite broad-based fundamental peak, both the regular and irregular
subharmonic peaks are very sharp. The corresponding waveforms and plots are shown in Fig. 13a,
13b and Fig.13c respectively. Fundamental peak response as well as lateral stiffness in Fig.13a
seems to be out of phase with axial force. Regular T2 subharmonic response occurs at half the forc-
ing frequency. However, relative to the axial force, Fig.13b the temporal variation of lateral stiffness
is to be more complex. As expected, the irregular subharmonic response frequency equals the forcing
frequency, despite the complexity of displacement waveform and corresponding phase plot shown in
Fig. 13c. However, the variation of stiffness seems to be out of phase with that of axial force.
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Figure 13a: Typical time domain and phase response at fundamental resonance peak (ry = 0.905, P = 0.45P.;4).
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Figurel3b: Typical time domain and phase response at subharmonic resonance peak (ry = 1.993 for P = 0.45P,).
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Figure 13c: Typical time domain and phase response at
irregular subharmonic resonance peak (rg = 499 for P = 0.45P,4).

Latin American Journal of Solids and Structures 11 (2014) 925-945



938 Sharma et al. / Parametric Resonance in Concrete Beam-Columns

3 x 10
338720 . . : 5 i
alpha=0.01 | | 90=Qc alpha=0.1
%i=0.03 Pa1=4500kN 45l xi=0.03 ||
wn=18.3rad/s -
- w(0)=0.003317 (=
£ v(0)=0 = 4
3 3.34r t=200s z
35
3 L L L
.s 0 05 15 25 3
| 05 1 15 2 rf
2 rf
10X 10 i 0.025 .
alpha=0.25 L alpha=0.5
8t %003 002 Xi=0.03
-
£
S
2
2 r r r r r 0 . . .
0 0.5 1 15 2 25 o 05 15 25 3
rf e
0.04 . 0.06 :
alpha=0.75 al_pha:l.O
L P Xi=0.03
0.03 Xi=0.03 004 |
E
2 002 |
o , . . . . 0 . , ,
0 05 1 15 2 25 0 05 15 2 25
rf rf

Figure 14: Effect of damping on frequency domain response for § = 0.03.

The predicted parametric resonance behaviour presented above pertains to undamped systems. It
is well known (Bazant and Cedolin, 2010) that, for damped systems, parametric resonance occurs
only for sufficiently high pulsating force. This observation is confirmed for concrete beam-columns
as well. Typical frequency domain response is presented in Fig. 14 for damped beam-columns for
different values of o. A comparison with frequency domain response for undamped beam-columns
reveals that the smaller values of a (0.01, 0.1) the phenomenon of parametric resonance does not
occur. Also, the peak amplitude for fundamental subharmonic resonances is suppressed by damping.

3 SMALL AMPLITUDE LATERAL VIBRATIONS

The following expressions for the lateral displacements and lateral stiffness of partly cracked beam-
columns undergoing small lateral displacements have been derived earlier by the Authors (Sharma,

Singh and Benipal, 2013):

K

where g=1L-— %1 > 0. The cracking loads P, and Q. (g

In contrast, in the absence of cracking, the relevant expressions are as follows
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To recapitulate, the phenomenon of parametric resonance of concrete beam-columns undergoing
small lateral displacements is investigated in this section under constant lateral force and pulsating
axial force. Their lateral stiffness being independent of the applied forces, the uncracked concrete
beam-columns do not exhibit parametric resonance. This fact is confirmed in Fig. 3 by their fre-
quency domain response without any peaks. However, the stiffness of the partly cracked beam-
columns depends of the magnitude of the axial force relative to the constant lateral force and their
P — w relation is nonlinear.

Such physically nonlinear elastic beam-columns are expected to experience parametric resonance.
As shown in Fig. 15 undamped cracked concrete beam-columns undergoing even small lateral dis-
placements indeed exhibit the phenomenon of parametric resonance for different magnitudes of the
pulsating force. Apart from fundamental peak, one T2 regular subharmonic and many irregular
subharmonic peaks are observed. The corresponding resonance frequencies and peak amplitudes are
presented in the Table 2. Comparison of Fig. 15 and Table 2 with the corresponding figure Fig. 6
and Tablel plotted for finite deformation case reveals higher fundamental and subharmonic reso-
nance frequencies for small deformation case, the peak amplitudes case, the peak amplitudes
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Figurel5: Effect of magnitude of pulsating load on frequency domain response.
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are substantially similar. Also, the effect of o on the resonance frequency ranges is presented in Fig.
16. Comparing with the corresponding Fig. 7 for finite deformations, lead to the conclusion that
fundamental resonance peaks are broader at lower pulsating forces for small deformations. Subhar-
monic resonance peaks is broader for small deformations at the lowest pulsating force. No such defi-
nite conclusion could be drawn for higher pulsating forces. Typical wave forms (a=1) for P, w and
K alongwith phase plots for fundamental and T2 regular subharmonic resonances are presented in
Fig. 17 and Fig. 18 respectively. As expected, the response frequencies in these two cases are equal
to and half the forcing frequencies. In both the case, the temporal variation of lateral stiffness occurs
at the response frequency. When partly cracked, the concrete beam-columns are physically nonline-
ar. In the case of finite lateral displacements, geometric nonlinearity is presented as well. As such

these structures under pulsating axial force are also expected to exhibit extreme sensitivity to initial
conditions, system parameters and loading details. Such indeed happens to
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Figure 16: Range of parametric resonance frequencies for small deformations.
4,=Q. Fundamental Peak Regular subharmonics Irregular subharmonics
o I w (m) I w(m) I
0.01 1.009 0.003449 2.041 0.003423 0.344, 0.515
0.1 0.824 0.00614 1.767

0.004693 0.230, 0.304,0.449

0.25 0.698 0.01942

1.609 0.007327 0.166,0.209,0.273,0.398
0.5 0.629  0.03459 1.49 0.01382 0.158,0.192,0.249,0.359
0.75 0.584  0.05056 1.415 0.02468 0.131,0.151,0.183, 0.236,0.282
Lo 0551 0.06007 Lo 0.04500 251329,0.14770.17870.206,0.228,0.272,0.318,0.

Table 2: Resonance frequency ratios and vibration amplitudes.
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Figure 18: Typical time and phase response at subharmonic resonance peak (B = 0.18006, ¢ = 1.294).
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Figure 20: Effect of mass on resonance amplitude at ry = 1.294.
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be the case. As shown in Fig. 19 an infinitesimally small difference (0.0001m) in initial displacement
results in an altogether different response. Similarly, as shown in Fig. 20, one percent decrease in
the lumped mass results in considerably smaller response. Similar further reduction in lumped mass
results in similar displacement response but entirely different phase plot.
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Figure 21: Effect of damping on frequency domain response for & = 0.03.

Typical effect of damping (£=0.03) on small deformation frequency domain response for different o
is depicted in Fig. 21. As expected, the parametric resonance in the form of T2 regular subharmonic
does not at very small pulsating force («=0.01). Both fundamental and subharmonic peak responses
are suppressed by the presence of damping.

4 DISCUSSION

In this Paper, the phenomenon of parametric resonance of cracked concrete beam-columns in the
form of a massless vertical cantilever with mass lumped at the free end is investigated. The second
order inhomogeneous linear differential equation of motion with variable coefficients is formulated
both for the finite and the small lateral vibration cases. For ready reference, the dynamic stability
of uncracked physically linear concrete beam-columns undergoing finite lateral displacements is pre-
sented. As expected, parametric resonance occurs at a frequency ratio of two in the form of T2
regular subharmonic peak. At the resonance frequencies, the system is predicted to exhibit un-
bounded divergent response. In other words, the dynamic instability called parametric resonance is
of divergence type. In contrast, the physically nonlinear undamped cracked concrete beam-columns
exhibit both regular and irregular subharmonics in addition to fundamental resonance under various
combinations of sustained axial and lateral loads. The resonance peaks get broader with increase in
the magnitude of the peak sinusoidal force. For statically stable sustained load sets (Py < Pepy,
Pmin < Py < Ppax), the vibration amplitudes at these resonance frequencies are bounded. This im-
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plies that, in such cases the parametric resonance does not constitute dynamic instability. Loss of
dynamic stability by divergence is predicted to occur at statically unstable sustained load sets
(Po = Pmax or Py = Ppin).

To recapitulate, the physically linear undamped beam-columns undergoing small lateral dis-
placements do not exhibit the phenomenon of parametric resonance. However, the physically non-
linear cracked concrete beam-columns, even when executing small lateral vibrations do so. Such
happens to be the case because of the explicit dependence of the lateral stiffness on axial force and
hence on time. Apart from the fundamental resonance, both regular and irregular subharmonic res-
onances are predicted. These beam-columns exhibit stable dynamic response even at resonance fre-
quencies. This happens because concrete beam-columns undergoing small lateral displacements are
always statically stable.

Irrespective of the magnitude of the lateral displacements, the phenomenon of parametric reso-
nance has been predicted not to occur at smaller pulsating loads for typically damped concrete
beam-columns. Even at high pulsating forces, the resonance peaks are suppressed by damping. As
expected, the steady state resonance of nonlinear dynamical systems executing small or finite ampli-
tude vibrations is extremely sensitive to initial conditions and system parameters like lumped mass.

The most significant contribution of this Paper to the theory of parametric resonance involves its
extension to the physically nonlinear beam-columns. In some cases, the physical nonlinearity has
been shown to stabilize the beam-columns experiencing parametric resonance as well as fundamental
resonance. The phenomenon of parametric resonance is predicted for these physically nonlinear
beam-columns undergoing even small lateral displacements.

Seismic design of structures aims at ensuring their safety against the dynamic forces introduced
by strong ground motions. These base excitations include horizontal and vertical accelerations as
well as angular accelerations. Seismic design Codes recommend that peak vertical acceleration be
taken as two-thirds of the peak horizontal acceleration. Generally, the structures are designed for
separately for the peak (horizontal) ground acceleration and checked for vertical vibrations. Elastic
response obtained by using linear theory of vibrations is modified by using response reduction fac-
tor. These horizontal and vertical seismic forces are considered to be conservative. When the lateral
vibration amplitudes are of finite magnitude, geometrically nonlinear response is incorporated in the
form of second order effects like P-8 and P-A effects respectively at the local and global scale (Cho-
pra, 1998; Dutta, 2010).

Free and forced lateral vibrations and stability nonlinear elastic concrete beam-columns under
constant axial forces have been investigated earlier by the Authors (Sharma, Singh and Benipal,
2012a, 2012b). In this Paper, the lateral force has been assumed to remain constant and the hori-
zontal dynamic response of concrete beam-columns under pulsating axial force has been predicted.
Effect of the pulsating vertical force on the small and finite amplitude lateral vibrations of concrete
beam-columns is quantified. To the best of Authors’ knowledge such an exercise has not yet been
under-taken in the field of concrete structural dynamics (Chopra, 1998; Dutta, 2010).

Concrete structures supporting pulsating or rotating machinery constitute another example.
When the machine platform remains horizontal, the dynamic forces imposed on the structure are
conservative. Specifically, the pulsating machines impose vertical periodic force, while the structures
supporting rotating machines experience both horizontal and vertical sinusoidal forces. The particu-
lar case of two rotating machines with opposite direction of rotation results only in the vertical si-
nusoidal force. As a matter of fact these so-called vertical and horizontal forces respectively act in a
direction tangential and normal to the deformed centroidal axis. Thus, in the case of finite rota-
tions, these dynamic forces turn out to be simultaneously-acting nonconservative pulsating tangen-
tial and normal follower forces. Stability of concrete beam-columns subjected to constant tangential
follower force has been investigated by the Authors (Sharma, Singh and Benipal, 2013). These as-
pects of seismic response of concrete structures and dynamic behaviour of machinery-supporting
concrete structures are of great relevance to structural designers. However, the scope of the present
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investigation is restricted to vibration response of cracked concrete beam-columns subjected to a
constant lateral force and a pulsating vertical conservative force. Obviously, the proposed theory
has to be extended and validated with relevant experimental data. Only then will it be of some
practical relevance to designers of such concrete structures.

5 CONCLUSIONS

Concrete beam-columns are rendered physically nonlinear by the closing and reopening of the exist-
ing transverse cracks. An attempt has been made in this Paper to incorporate the effect of such
physical nonlinearity in the classical theory of parametric resonance. The phenomenon of parametric
resonance is predicted to occur in the form of T2 regular subharmonic resonance. This dynamic
instability related to parametric resonance occurs only for the statically unstable sustained load sets
(Py, Q). Otherwise, the presence of physical nonlinearity stabilizes these beam-columns experiencing
resonance. Also, physically nonlinear concrete beam-columns, even when undergoing small lateral
displacements, are predicted to exhibit parametric resonance. When fully developed and empirically
validated, the theory of parametric resonance purposed in this Paper is expected to be relevant for
the design of concrete beam-columns subjected to pulsating axial forces due to earthquakes and
machinery.
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