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Abstract 
In structural health monitoring (SHM), uncertainties from environmental noise and modeling errors affect 
damage detection accuracy. This paper introduces a new concept: the Fast Fourier Transform Coefficient Ratio 
(FFTCR), which develops a damage indicator (DI) based on a probability model. The method involves 
calculating the probability density function (PDF) of the ratio and the Jensen-Shannon divergence (JSD) square 
root distance, which measures similarity between probability distributions. A baseline threshold is proposed 
using the Markov Chain Monte Carlo (MCMC) method and Monte Carlo discordancy test to handle 
uncertainties in statistical parameters. The robustness of the method is validated through the DBSCAN 
algorithm, which distinguishes damage states by applying a 1% exclusive threshold to the clustering results. 
The method requires no postprocessing of raw data, relying solely on response measurements. It is validated 
through two experiments, including laboratory ambient vibration tests and a field test on a bridge under 
forced vibration. Results show superior accuracy and broader applicability compared to the Mahalanobis 
Squared Distance (MSD) method. 
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1 INTRODUCTION  

Engineering infrastructures are vulnerable to degradation due to human activities and environmental influences, 
which can accelerate damage accumulation and reduce the lifespan of structures. To address this, SHM systems have 
been widely adopted across various disciplines, including mechanical, aerospace, and civil engineering (Hu et al., 2022; 
Yang and Yang, 2018). 

Structural damage detection techniques are generally classified into two main categories: non-destructive testing 
(NDT) and vibration-based methods. NDT methods are localized approaches that often fail to identify internal structural 
damages (He and Ng, 2017; Yan et al., 2020). In contrast, vibration-based methods analyze alterations in the overall 
vibration characteristics of structures, thus providing a comprehensive assessment (Avci et al., 2021). These methods 
have gained significant attention over recent decades due to their global approach to identifying structural integrity (Hou 
and Xia, 2021). 

The field of structural damage detection has increasingly focused on leveraging the alterations in dynamic properties 
derived from ambient vibration data. One of the persistent challenges in practical applications is the insufficient 
sensitivity of conventional dynamic indicators like natural frequencies and modal shapes to the presence of structural 
damage (Capecchi et al., 2016). This has driven the need to develop novel diagnostic indicators more responsive to such 
damages. As the search for more effective damage detection methods continues, the Transmissibility Function (TF) has 
emerged as a promising alternative (Chesné and Deraemaeker, 2013). Unlike the Frequency Response Function 
(FRF)(Bandara et al., 2014; Liu et al., 2009), which delineates the input-output relationships within dynamic systems, TF 
provides a mathematical framework for understanding output-to-output relationships without requiring direct 
measurement of the input forces (Devriendt and Guillaume, 2007). This characteristic notably reduces the dependency 
on precise input measurements and alleviates the impact of variations in input on the damage detection process (Soofi 
and Bitaraf, 2022; Wu et al., 2021). Furthermore, TF-based approaches offer significant advantages by eliminating the 
need for modal identification and avoiding reliance on analytical or discretized structure models (Maia et al., 2011). These 
attributes make TF-based damage detection not only innovative but also practical for real-world applications. As a result, 
TF-based strategies have gained considerable interest for their robustness and efficacy in identifying structural damages 
across various engineering domains. 

A significant advancement occurred when a NASA research team suggested utilizing the integral across a frequency 
band of the discrepancy between two TFs from intact and damaged states as a damage indicator (Zhang et al., 1999). 
This approach has subsequently been embraced and expanded upon in subsequent studies (Schallhorn and Rahmatalla, 
2015; Zhu et al., 2010). Wu et al. (2021) introduced a novel method for detecting and localizing debonding beneath 
concrete pavement through transmissibility function (TF) analysis, emphasizing easy and low-cost implementation. It 
detailed the measurement node array layout, signal processing, and testing procedures, and used finite element analysis 
(FEA) and field tests to validate the effectiveness of TF analysis in debonding detection and localization. Zhang et al. 
(2016) introduced a novel generalized transmissibility damage indicator (GTDI) that enhanced condition monitoring of 
engineering structures by improving sensitivity and reducing noise. 

Worden and his team (Manson et al., 2003; Worden and Manson, 2003, 2007; Worden et al., 2000) devised a range 
of innovative indices using the TF, integrating pattern recognition and machine learning algorithms to identify potential 
features for damage detection. Recently, it has been extensively documented that clustering methods are effective for 
novelty detection (Amarbayasgalan et al., 2018; Yu and Kang, 2023).  Mei et al. (2022) introduced a data-driven structural 
novelty detection technology that utilized the transmissibility function (TF) and Gaussian mixture model (GMM) 
clustering. 

TF-based damage detection methods are increasingly favoured in recent proposals. Nonetheless, existing theories 
largely focus on deterministic approaches. In practical settings, numerous factors introduce uncertainty (Yan et al., 2019), 
including the stochastic nature of vibrational responses, environmental variability, estimation errors, measurement noise 
and so on. These factors can cause variability in damage indicators, which may result in inaccurate interpretations of 
data. The cautionary characteristics resulting from multiple uncertainties might overshadow those stemming from 
genuine structural damage. Consequently, there is a critical demand for the development of theoretically robust methods 
that can effectively manage these uncertainties within the framework of TF-based damage detection. In this context, 
exploring the characterization of uncertainty in TF merits additional research. In this regard, Mao and Todd's research is 
a pioneering effort that developed quantified uncertainty models for TFs, estimated using Power Spectral Density (PSD) 
(Mao and Todd, 2012, 2013). Recently, there has been some progress in research on the uncertainty of TF-based damage 
detection (Mei et al., 2022; Mei et al., 2023; Yan et al., 2022). 

In this study, to improve the precision of anomaly detection by addressing these uncertainties, a new data-driven 
damage detection approach is proposed that relies solely on response measurements. This method requires no 



  

postprocessing of the raw data. Inspired by the concept of the TF, the Fast Fourier Transform Coefficient Ratio (FFTCR) is 
introduced and detailed in Sect. 2 of this article. A novel DI based on the probability model of FFTCR is developed, 
involving the computation of the PDF of FFTCR and the square root distance derived from the JSD. The JSD is utilized to 
assess the similarity between two probability distributions and has been proposed as a novel diagnostic tool for structural 
damage detection due to its high sensitivity in detecting minor changes between distributions (Zhang et al., 2020). 

To accommodate the uncertainties of statistical parameters, the MCMC resampling method is used to determine 
the statistical threshold under the intact state. The determination of this threshold can effectively distinguish the DI 
values of the intact state from those of the potentially damaged state. DBSCAN is a clustering algorithm that identifies 
clusters of varying shapes and sizes in datasets. It effectively detects outliers (noise points) and does not require the 
specification of the number of clusters in advance (Civera et al., 2023). In this study, the DBSCAN clustering algorithm is 
used to further investigate the robustness of the proposed method against uncertainties. Simultaneously, combining the 
results of the clustering with the threshold method also allows for the validation of structural damage outcomes. Exper-
imental data from two case studies are employed to confirm the feasibility and effectiveness of the proposed method-
ology. 

There are several advantages to the FFTCR-based damage detection method: (ⅰ) This proposed method effectively 
bypasses the need for complex operations involving imaginary numbers by ensuring that all calculations and procedures 
are conducted strictly within the real number domain, thereby simplifying the computational process and enhancing 
practical applicability. (ⅱ) The FFTCR-based damage detection exhibits greater sensitivity to structural damages than 
traditional dynamic properties. (ⅲ) FFTCR data can be directly utilized, circumventing potential errors associated with 
modal identification. (ⅳ) The FFTCR can yield a richer dataset as it can be measured at multiple points within a structure. 
(ⅴ) Damage detection can be enhanced by utilizing numerous data points from FFTCRs across an extensive frequency 
range. 

2 Analytical probability model of FFTCR 

Given a linear system subjected to stationary excitation, time-domain response measurements are collected at two 

spatial locations, m and n , represented as ( )
m
ty  and ( )n ty . These measurements consist of LN discrete data points: 
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The Fast Fourier Transform Coefficient Ratio (FFTCR) is defined as the ratio of the real part of one point to the real 
part of another, and the ratio of the imaginary part of one point to the imaginary part of another in the FFT, as illustrated 
in the following expression: 
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The k

mnT matrix for any two points is defined as follows: 
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Eqs. (1) and (2) represent the ratio of two correlated normal random variables, and the Probability Density Function 
(PDF) of this ratio can be expressed as follows (Hinckley, 1969): 
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where k

mnt represents the value of the random variable k

mnT evaluated at the frequency kw , 
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Eqs. (4) and (5) define the PDF for k

mnT . These equations will be used to compute the square root distance of the JSD 

under different structural states, which will aid in applying JSD to damage detection. 

3 Square root distance of JSD between two different PDFs 

3.1 Definition of square root distance of JSD 

The JSD is a method of measuring the similarity between two probability distributions (Lin, 1991). It is a symmetrized 
and smoothed version of the Kullback-Leibler divergence (KLD) (Kullback and Leibler, 1951). The KLD is widely applied in 
various fields, such as machine learning, where it supports algorithms like variational Bayes, and in information theory, 
particularly for signal processing. It is utilized wherever quantifying the ‘distance’ between probability distributions is 
necessary. 

The KLD from a distribution ( )p x to a distribution ( )q x , denoted ( ( ) || ( ))KLD p x q x , is a measure of the information 

lost when ( )q x is used to approximate ( )p x .It is given by: 
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However, KLD is not symmetric, meaning ( ( ) ( )) ( ( ) ( ))P PKL KLD p x q x D q x p x .To overcome the asymmetry and to smooth 

the distributions, a mixture distribution is introduced, which is the average of ( )p x and ( )q x : 

1
( ) ( ( ) ( ))

2
= +M x p x q x                                                                                                                                                                               (7) 

The JSD is then defined using the KLD and the mixture distribution M. It is the average of the KLD of ( )p x to ( )M x

and the KLD of ( )q x to ( )M x : 
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Substituting Eq. (6) into the Eq. (8) yields: 
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The JSD possesses the properties of being symmetric, ( ( ) ( )) ( ( ) ( ))=P PJSD p x q x JSD q x p x , and always yields values 

between 0 and 1. Here, 0 indicates identical distributions, and 1 indicates that the distributions do not overlap at all. 
It is also common to take the square root of the JSD to obtain a metric that is a true distance measure in the 

mathematical sense because it satisfies the triangle inequality. This is known as the Square Root of the JSD ( JSDSR ): 
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This logic underpins the use of JSD in applications where a symmetric and smooth measure of divergence between 
two distributions is required, such as clustering probability distributions or comparing statistical samples in machine 

learning. In the subsequent section, the JSDSR will be employed to develop a novel damage indicator. 

3.2 Square root of JSD between FFTCRs under two structural states 

Damage can alter FFTCRs, and these changes can be detected by computing the JSDSR between the FFTCRs under 

undamaged and potentially damaged state. The PDFs of the real part-based and imaginary part-based FFTCRs under 
intact state are presented in Eqs. (4) and (5). To avoid confusion, the PDFs of FFTCR under damaged state are expressed 
as follows: 
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where the superscript d represents the potential damage state. Substituting Eqs. (4) and (5), as well as Eqs. (11) and (12) 
into Eq. (10), yields expressions for the real part-based k

JSDSR and the imaginary part-based k
JSDSR between the intact state 

and the potentially damaged state at kw : 
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where the mixture distribution 
1

( ) ( ( ) ( ))
2

= +d dM x p x p x . 

The square root of JSD is often preferred over JSD itself when the properties of a metric are required. It allows for 
the application of geometric interpretations and techniques that rely on metric properties, which is not possible with the 
JSD or KLD alone. Its boundedness, symmetry, and satisfaction of the triangle inequality make it a robust tool for 
comparing probability distributions. The square root of JSD, being a bona fide metric, offers a robust method for 
quantitatively assessing and visually representing the resemblance between probability distributions. This inherent 
advantage is applied in actual damage monitoring, which helps to accurately quantify the probability distribution 
differences under different damaged states. 

3.3 Damage indicator based on the square root of JSD 

The square root of JSD between FFTCRs under the intact state and the possibly damaged state can be utilized to 
detect novelties. To augment the robustness of this analytical technique, data fusion is performed across a variety of 
measurements and frequency points, thereby enriching the dataset and enhancing the accuracy of the detection process. 

For a multi-degree-of-freedom structure, select r response measurements for analysis 1 2( ) { ( ), ( ),..., ( )}= rt t t ty y y y .Under 

the same reference response measurements ( )n ty , the real part-based and the imaginary part-based k
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according to previous Eqs. (1) and (2), can be obtained: 
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According to Eqs. (13) and (14), the square root of JSD between the intact state and the potentially damaged state 
can be calculated within a specific frequency band  1 2,w w . The damage indicator (DI) is derived by initially averaging the 

values from the selected response measurements and subsequently averaging these results across the entire frequency 
band. The specific formulas are as follows: 
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where n is the total amount of frequency points throughout the given frequency range  1 2,k kw w . It should be explicitly 

noted that the DI proposed here does not depend solely on measurements from two specific points. Although the FFTCR 
is initially defined between two arbitrary points, the final DI values are derived by averaging FFTCR-based Jensen-
Shannon divergence values across multiple pairs of measurement points and frequency points, as clearly indicated in 
Eqs. (17) and (18). This averaging procedure significantly reduces the sensitivity of the proposed method to the specific 
selection of individual measurement locations, thereby enhancing its robustness and general applicability to various 
structural systems. In the subsequent section, the paper will elaborate on the application of the DI for identifying 
structural anomalies. This process involves the use of threshold-based decision criteria and clustering algorithms, which 
enable the differentiation between normal and anomalous structural behaviors. 

4 Damage detection based on threshold technology and DBSCAN clustering 

Once these DI values from different structural states are calculated, the subsequent task involves distinguishing 
which values indicate a damaged state and which suggest a healthy state. The use of decision-making criteria based on 
threshold and DBSCAN clustering algorithm has been proven effective. The threshold-based method establishes a 
boundary between healthy and potentially damaged states; values exceeding this threshold indicate structural potential 
damage. The data grouped by clustering algorithm consist of DI values. Clustering algorithm categorizes all DI values, 
grouping similar values to denote the same state. The robustness of the DI values against uncertainty is directly reflected 
in the number of noise points within the clustering results. Therefore, while the clustering algorithm is used for state 
discrimination, it also serves to validate the robustness of the proposed method. 

4.1 Damage detection based on threshold value 

It is important to highlight that the accuracy of SRJSD-based structural anomaly detection is influenced by the 

variability of the model parameters   1 2, , , , , ( [ , ])     = k k k k

n

k

m nk m mn k k k , which encapsulates the inherent uncertainties 

from observational data and model assumptions. To mitigate these uncertainties, a MCMC resampling scheme is 
adopted. This scheme involves repeatedly sampling and estimating the model parameters to better capture the 
uncertainty. By employing the MCMC method to generate samples from the distribution of FFT coefficient matrices (

w zn nA and w zn nB are composed of real part data and imaginary part data, respectively), Monte Carlo significance testing 

is subsequently conducted to determine thresholds for the 1% discordancy tests from DIs. 
4.1.1 MCMC resampling scheme 

MCMC is a statistical method used for estimating the distribution of parameters within complex models, especially 
when direct sampling is challenging. This approach simulates a sequence of random samples, which are designed to 

converge over time to the target probability distribution. Resampling is conducted on the FFT coefficient matrices ( w zn nA

and w zn nB ) derived from the structural response. In these matrices, rows correspond to frequency points and columns 

to segments of the measurement data. The resampling adheres to the probability distribution specific to each row within 

matrices w zn nA and w zn nB ,ensuring that the resampled data maintains consistency with the original probability 

distribution at specific frequencies. During the sampling process of MCMC methods, the Metropolis-Hastings Algorithm 

was employed. Take the resampling of matrix A as an example to illustrate the implementation process of the 

Metropolis-Hastings Algorithm. The resampling for matrix B is similar. The Metropolis-Hastings Algorithm generally 



  

consists of three main steps: Step (1): Statistical parameters calculation; Step (2): Initial sample; Step (3): Proposal and 
Acceptance. The formula for acceptance probability is as shown in Eq. (19). The flowchart of the algorithm is shown in 
Figure. 1. 
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Figure 1 detailed explanation the implementation of the Metropolis-Hastings algorithm for resampling within a 
specified statistical framework, typically involving the mean and standard deviation of distributions. Each step is crafted 
to ensure that the sampled values closely mirror the underlying characteristics of the distribution, thereby leveraging the 
principles of MCMC to attain effective and representative sampling. 

 
Figure 1 The flowchart of the Metropolis-Hastings Algorithm. 

4.1.2 The determine of statistical threshold 

According to the flowchart shown in Figure 1, we generate multiple sets of samples within the specific frequency 
band  1 2,k kw w under intact state, each set containing the desired number of samples. Multiple sets of sampled data 

obtained at a specific frequency can be analyzed to derive the statistical model parameters  , ,, , ,, , , , ,     = i k

m n

i i k k

m

i

n

i i k k

k m n

1 2( [ , ])k k k , Where i represents the i-th resampled data group. Subsequently, apply Eqs.(17) and (18) to compute the 

DIs for each sampled group. Finally, determine the statistical threshold using Monte Carlo discordance testing. The 
threshold determination method is detailed below: 

(i) Firstly, the FFT coefficient matrices ( w zn nA and w zn nB ) are established under undamaged conditions. Subse-

quently, resampling is performed using the MCMC method based on the distributions of each row in the matrices. 

(ii) Calculating the statistical parameters  ,, , , ,

1 2, , , , , ( [ , ])     = i i k i k i k i k

k m n

i k

m n mn k k k  from the resampling results, and 

then use Eqs. (4) and (5) to compute the PDFs of the FFTCRs. 
(iii) The square root Jensen-Shannon distances are calculated from the PDFs of the of FFTCRs using Eqs. (13) and 

(14). 
(iv) By using Eqs. (17) and (18), the averaged square root Jensen-Shannon distances are calculated by combining all 

selected measurements and frequency points, and the calculated values are then stored. 
(v) Repeat steps (i) to (iv) across numerous trials to form an array sorted by the magnitude of the highest damage 

indices. Set the threshold for the 1% discordancy tests by locating the point in the array where damage indices exceed 
the top 1%. 

By following the above steps, one can establish a statistically rigorous threshold that indicates damage when 
exceeded. This method ensures that the threshold is both precise and reliable, providing a robust indicator of structural 
damage. 
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4.2 Robustness validation based on DBSCAN clustering 

The DBSCAN technique was first introduced by Ester (1996). DBSCAN clustering has also been widely applied in 
damage detection in recent years (Li et al., 2020; Wodecki et al., 2021). DBSCAN is a popular clustering algorithm primarily 
used to identify clusters in a dataset, which are dense groups of points, and to handle noise or outliers effectively. This 
algorithm is particularly well-suited for dealing with clusters of complex shapes and sizes, and it does not require 
specifying the number of clusters in advance, setting it apart from many other clustering algorithms such as K-means. 
DBSCAN's ability to handle complex data without predetermined cluster numbers is particularly advantageous in the 
context of dealing with uncertainties in structural health monitoring. 

To further investigate the impact of statistical parameter uncertainties, induced by environmental noise and model-
ing errors, on the DI values derived from different structural states. The DBSCAN clustering algorithm is utilized to assess 
the robustness of the proposed method against uncertainties, based on the number of noise points in the clustering 
results. Furthermore, the algorithm inherently possesses the advantage of effective discrimination, thus enabling the 
efficient classification of DIs from various structural states. This contributes to damage detection. In this article, the da-
taset consisting of DIs, calculated using Eqs. (17) and (18) after MCMC resampling under different structural states, is 
classified using the DBSCAN algorithm. The implementation of the DBSCAN clustering algorithm in this context is based 
on two main formulas: 
1.  -neighborhood: 

( ) { | dist( , ) } =  N m m DIs m o                                                                                                                                                                       (20) 

Where ( )N m denotes the  -neighborhood of pointm , comprising all points located within an  distance fromm .DIs is 

the dataset,m ando are points inDIs ,and dist( , )m o is the distance betweenm ando . 

2. Core Point Condition: 
____ −

=T
DI

DI
q

s
                                                                                                                                                                                                         (21) 

The main steps of the DBSCAN clustering algorithm are as follows: 
(i) Initialization: Standardize the data DI as follows: 

____ −
=T
DI

DI
q

s
                                                                                                                                                                                                    (22) 

(ii) For each unvisited pointm : 

● Retrieve all points within distance, ( )N m . 

● Ifm is a core point (i.e. | ( ) | MinPts N m ), Start a new cluster or expand an existing one. adding recursively all 

core points in ( )N m and their reachable points to the cluster. 

● Ifm is not a core point, classifym as a border point if applicable; otherwise, classifym as noise. 
(iii) Iterate until all points have been processed. 

By employing the DBSCAN algorithm, the DIs derived from different structural states are classified. This enables the 
distinction between DIs from an intact state and those indicative of a potentially damaged state. Furthermore, by 
applying the 1% exclusive threshold under the intact state, as described in Sect. 4.1.2, to these clustering results enables 
the identification of structural damage. 

5 Procedures of structural damage detection 

As described in Section 4, a novel damage detection framework is developed, based on the Fast Fourier Transform 
Coefficient Ratio (FFTCR) and the square root of the Jensen-Shannon divergence (JSD). Within this unified framework, 
two procedures are implemented: (i) damage identification through a threshold-based decision strategy, and (ii) 
robustness verification through DBSCAN clustering and threshold cross-checking. The overall process is summarized in 
Figure 2 and includes the following steps: 
Step (1): Establish the statistical threshold for damage detection 

● Extract matrices w zn nA and w zn nB via FFT of zn segments of structure response data under intact state. 

●Based on the results of MCMC resampling, calculate these statistical parameters  , ,, , ,, , , , ,     = i k

m n

i i k k

m

i

n

i i k k

k m n  

1 2( [ , ])k k k for each frequency point within the selected frequency band  1 2,w w . 

● Establish the damage indicator threshold as outlined in Section. 4.1. 
Step (2): Damage detection using the threshold value 



  

● Extract matrices w zn nA and w zn nB through FFT of zn segments of structure response measurement under different 

states. 
● Calculate the DIs under different states using Eqs. (17) and (18). 
● Compare the DIs calculated under different states to the statistical threshold; any values exceeding this thresh-

old indicate damage. 
Step (3): Robustness validation via DBSCAN clustering 

●Use the MCMC resampling method, statistical parameters i

k
under the various states are determined, and the 

PDFs for each group of samples are calculated using Eqs. (11) and (12). Subsequently, the DI dataset for each structural 
states is computed using Eqs. (17) and (18). 

● The DBSCAN algorithm is used to classify the DI dataset calculated from various states. The distribution of noise 
points and the clustering consistency are analyzed to evaluate the robustness of the proposed damage detection method. 

 

 
Figure 2 Flowchart of the proposed damage identification method in this paper. 

6 Case studies 

In this section, we introduce two realistic cases to verify the effectiveness and accuracy of the proposed method. 
The first case involves four simply supported beams in a laboratory setting, while the second examined a Z24 bridge 
experiencing progressive damage on site. In both experiments, various damage conditions representative of practical 
applications were simulated. 

6.1 Damage detection of simply supported beams 

6.1.1 Damage detection based on threshold value 
Four simply supported beams are shown in Figure 3, one of which is undamaged, while the other three are sequen-

tially damaged at one, two and three levels, respectively. Each beam, uniformly fabricated from aluminum within the 
same production facility, measures 300 cm in length, 10 cm in width, and 3 cm in thickness. Figure 3 illustrates that the 
number of cuts quantifies the structural damage in this study. The damaged states are designated as S1, S2, S3, and S4. 
S1 serves as the reference undamaged structure, while S2, S3, and S4 contain one, two, and three cuts, respectively. The 
damage scenarios are introduced by manually cutting through-thickness cuts into the steel beam specimens, as shown 
in Figure 3. Although these artificial cut-outs simplify actual bridge damage mechanisms, such as fatigue cracking or 
corrosion, they offer a controllable and repeatable means of altering the dynamic behavior of the structure. This allows 
for a clear and consistent evaluation of the proposed method’s sensitivity to structural changes under well-defined ex-
perimental conditions. Eight sensors were uniformly distributed and installed on each beam. The specifications of the 
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accelerometer are as follows: a sampling frequency of 200 Hz; a sensitivity of 2000 millivolts per gravity (mV/g); and a 
dynamic range of ±2g. Figure 4 shows the data acquisition system. It should be noted that data collection during this 
experiment was conducted under ambient vibration. At this sampling frequency, data from the four beams were contin-
uously acquired over 3 hours. The collected data were divided into 400 segments, and an FFT was applied to each seg-
ment, yielding 400 pairs of FFT coefficients (each pair containing a real and an imaginary part) for each frequency point. 

This process produced two matrices: the real matrix 400wn
A  and the imaginary matrix 400wn

B . 

 
Figure 3 Four simply supported beams under different damaged states. 

 
Figure 4 Data acquisition system. 

In this article, the analysis steps and process of the proposed method are illustrated using the real part-based
13

kt

and the imaginary part-based
13

kt . Figures 5-7 compare the PDFs of
13

kt and
13

kt for the intact state S1 and the damaged 

scenarios Si (i=2,3,4) at kw =15 Hz . The corresponding JSD is also shown. Significant changes in the PDFs of
13

kt and
13

kt are 

observed between the intact state S1 and the damaged states S2 and S3, as depicted in Figures. 5a, 5c, 6a and 6c. These 
deviations between the PDFs permit the assessment of structural state. However, Figure. 7a shows that the shift between 
the PDFs under the damaged state S4 is relatively minor, complicating the assessment of structural damage. This 
indicates that accurately assessing the structural integrity under all states based on a single frequency point is 
challenging. 

In order to further investigate the impact of different frequency points on PDF of 
13

kt , a comparative graph of 

multiple frequency points is made. The comparison of PDFs of 
13

kt before and after damage at different frequencies under 

different damage states is shown in Figure 8. The solid lines of the same color in the figure denote the undamaged state 
S1 at the same frequency point, while the three red dashed lines at each frequency indicate the damage state, namely 
S2, S3, and S4. Comparative analysis reveals significant relative shifts in the PDFs of

13

kt at frequencies of 10Hz and 20Hz 

before and after damage, enabling accurate damage detection in the structure. However, at a frequency of 15Hz under 
damage state S3, and at 25Hz and 30Hz under damage states S2 and S4, the changes between the PDFs of 

13

kt  are less 

discernible, posing challenges to damage identification. This observation highlights that reliance on single-frequency 
analysis may overlook potential structural damage. Therefore, an analytical method integrating multi-frequency points 
is required to evaluate the structural state, thereby enabling a more reliable damage identification. The method 

proposed in this paper effectively addresses this challenge by calculating the JSDSR across multiple frequency points. This 

process involves calculating the area under the JSD curve, as illustrated in Figures 5-7 b and d. Even in scenarios where 
traditional probabilistic methods are inadequate, the method enables accurate assessments and significantly improves 
the detection of structural damage 

The following sections first introduce the characteristics of JSDSR as it varies with frequency, and then validate the 

effectiveness and advancement of the DI derived from JSDSR in damage identification. 



  

 
 

 
Figure 5 The PDFs and JSDs for real part-based 15

13


t and imaginary part-based 15

13


t under two states of S1 and S2. 

 

 
Figure 6 The PDFs and JSDs for real part-based 15

13


t and imaginary part-based 15

13


t under two states of S1 and S3. 



  

 

 
Figure 7 The PDFs and JSDs for real part-based 15

13


t and imaginary part-based 15

13


t under two states of S1 and S4. 

 
Figure 8 Comparison of PDFs of 

13

kt before and after damage at different frequencies under different damage states. 

According to Eqs. (13) and (14), the real part-based 

JSDSR and imaginary part-based 

JSDSR between the potentially 

damaged states (S2, S3 and S4) and the healthy state (S1) can be obtained within the selected frequency band, as shown 
in Figures 9a and b. The establishment of baseline S1 was achieved using two sets of response data in the intact state. 
Figure 9c shows variations of the PSD across frequencies under various structural states. From these figures, it is evident 

that the peaks of the JSDSR and the PSD plot occur within comparable frequency ranges, and two important conclusions 

can be drawn: (1) Variations in the JSDSR across frequencies are minimal under undamaged state, with the degree of 

change close to zero. However, the changes in the JSDSR increase significantly under potentially damaged states, 

particularly in the resonance frequency region. This increase is attributable to the enhanced magnitudes of structural 
responses observed at these frequencies. Therefore the presented method exhibits low sensitivity to the undamaged 
state but high sensitivity to the damaged state, effectively demonstrating its applicability for structural damage 
detection. (2) k

JSDSR and k
JSDSR show consistent trends across damaged states, indicating their potential for structural 



  

health assessment. These favorable conclusions establish a theoretical foundation for the
TDI discussed in this article 

regarding its application in damage identification and prove its feasibility for detecting damages. 
 

 

 

 
Figure 9 The variation of JSDSR and PSD along with kw in various damage scenarios. 

The establishment of the TDI proposed in this paper generally involves two main steps: Initially, the first channel is 

used as the reference degree of freedom to construct the vectors  1 21 31 81
1 7

, ,...,
   


=k k k kt t tT and  1 21 31 81

1 7
, ,...,

   


=k k k kt t tT . 

The chosen frequency range for this analysis is between 1Hz and 60Hz, which encompasses the resonant frequencies 
most relevant to the structural behaviors being assessed. Subsequently, the averaged damage indicators 

TDI and 

TDI

are calculated according to Eqs. (17) and (18). These damage indicators are vital for assessing the structural integrity and 
identifying potential damages by quantifying deviations from the baseline conditions. These damage indicators under 
different states are presented in Figure 10, where Figure 10(a) displays the results based on the real part, and Figure. 
10(b) shows the results based on the imaginary part. The red dashed line in the figure indicates the DI threshold, which 
is determined based on the MCMC resampling method described in Sect. 4.1.2. This threshold is a critical benchmark for 
distinguishing between normal and abnormal structural states. The blue bars in the figure represent the DI values under 
various structural damage scenarios. It is evident that all DI values exceed the red threshold line, indicating that states 
(S2, S3, S4) are damage states. This demonstrates that the method proposed in this paper can accurately detect structural 
damage across different states and exhibits high robustness. Moreover, its damage identification accuracy surpasses that 
of the method based solely on the PDF changes before and after damage, as shown in Figure 8. 

To further demonstrate the performance of the proposed method in damage detection, this study employs the MSD 
of the magnitude transfer functions (TFs) for comparison, following the methodology described in Reference (Worden et 
al., 2000). MSD is a statistical metric utilized to quantify the distance between a point and a distribution, expressed as 
follows: 

   ( )      ( )1
MSD Σ     

−
= − −

T

x x                                                                                                                                                                  (23) 



  

Where  x is the potential outlier datum,    is the mean vector of the sample observations,  Σ is the sample 

covariance matrix. The determination of threshold value and method for generating the testing dataset for damage 
detection are both adopted from the literature (Worden et al., 2000). In both the undamaged state (S1) and the damaged 
states (S2, S3, S4), the magnitudes of the transmissibility functions (TFs) for channels 1 and 3 were replicated 1000 times 
each within the frequency band [1Hz, 60Hz]. This process resulted in a test dataset comprising 4000 observations. The 
damage detection results, as illustrated in Figure 11, reveal that despite the post-processing of the raw TFs, the MSD 
failed to identify most observations as outliers under damage states (S2, S3, S4). In contrast, the method proposed in this 
study successfully identified structural damage states, as demonstrated in Figure 10, thereby underscoring the superior 
accuracy of the proposed approach. 

  
Figure 10 The real part-based 

TDI and imaginary part-based 

TDI for S2, S3, and S4. 

 
Figure 11 Outlier detection using MSD under various structural states. 

6.1.2 Research on the Uncertainty of Statistical Parameters 
To rigorously test the impact of environmental noise and modeling errors on the proposed approach, the clustering 

results of the DBSCAN algorithm are used to demonstrate the performance of the proposed method in adapting to un-

certainties associated with statistical parametersk . DI samples are calculated using the MCMC resampling scheme 

under various damage states, as detailed in Sect. 4.1.1. For each state, 120 DI samples are calculated, resulting in a total 
of 480 DI samples across the four states. These samples are then clustered using the DBSCAN algorithm, as outlined in 
Sect. 4.2. The parameters for the DBSCAN algorithm are set as follows: = 0.15 and MinPts = 4. The clustering results, 
displayed in Figure. 12, illustrate how the DBSCAN algorithm segregates the calculated DI values under different struc-
tural states into distinct clusters, each represented by a unique color corresponding to a damaged state. Figure. 12a 
shows the clustering results of the DIs based on the real part, while Figure. 12b shows the clustering results of the DIs 
based on the imaginary part. By establishing a 1% exclusive threshold for DIs under the intact state (S1), it is observed 
that the DI values for the other states (S2, S3, S4) exceed this threshold. Therefore, states S2, S3, and S4 can be identified 
as damage states. Although a few noise points are present, they do not compromise the overall classification of structural 
states. These results confirm that the proposed method exhibits high noise resistance and robustness, ensuring the reli-
ability of the structural damage identification. 

To evaluate the classification performance of DBSCAN, a confusion matrix is employed. The confusion matrix is a 
machine-learning visualization tool that uses columns to represent expected class outcomes and rows to show actual 
class results. The study employs the False Positive Rate (FPR) and False Negative Rate (FNR) to quantitatively assess the 
performance of the proposed methods: 
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+
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Where True Positives (TP) represent numbers correctly identified as 'damaged,' and False Positives (FP) represent 
numbers incorrectly identified as such. True Negatives (TN) denote numbers correctly identified as 'intact,' and False 
Negatives (FN) denote numbers incorrectly identified as such. 

The confusion matrices of the DBSCAN clustering for DI values are shown in Figure 13. In Figure 13a, the confusion 
matrix reveals a FPR of 2.00% and a FNR of 1.67%, with 295 true positives and 98 true negatives out of total samples. 
Conversely, Figure. 13b exhibits a FPR of 3.00% and a FNR of 1.00%, identifying 297 true positives and 97 true negatives. 
Matrix (b) shows a higher accuracy in classifying the damaged state (99%) compared to Matrix (a) (98.33%), while Matrix 
(a) exhibits a slightly higher accuracy in classifying the intact state (98%) compared to Matrix (b) (97%). Both matrices 
have a small number of misclassifications, indicating a high level of accuracy in the classification of 'intact' versus 
'damaged' categories. It has been demonstrated that the distribution of DI values remains relatively concentrated across 
various individual structural states. This consistency is maintained even in the presence of environmental noise, 
indicating that external factors do not significantly influence the dispersion of these values. Such robustness further 
underscores the effectiveness of DI values as reliable indicators for classifying damage states. 

 

 
Figure 12 The clustering results for the real and imaginary parts of DI values. 

  
Figure 13 The confusion matrices of the DBSCAN clustering for DI values. 



  

6.2 Structural damage detection for the Z24 bridge 

In this section, the efficacy and accuracy of the proposed damage detection method are further validated using the 
famous Z24 bridge (Peeters and De Roeck, 2001; Reynders and De Roeck, 2010), located in the Canton of Bern, 
Switzerland, which connects Koppigen and Utzendorf. This bridge, a three-span prestressed concrete structure, features 
a main span of 30 meters flanked by two 14-meter side spans. The geometric layout is illustrated in Figure 14, and Figure 
15 displays the bridge's cross-section and the arrangement of sensors used for the vibration test. A subset of sensors 
numbered between 199 and 243 from those installed on the bridge's surface, was selected for this case study. The 
complete sensor layout diagram is provided in Ref. (Maeck and De Roeck, 2003a). In this study, vertical acceleration 
response data, recorded from progressive damage tests conducted from 4 August to 9 September 1998, are utilized for 
damage detection. These tests were performed continuously just before the demolition of the bridge. An overview of all 
progressive damage tests is presented in Table 1. It should be noted that the damage scenarios in the Z24 bridge dataset 
were intentionally introduced during the decommissioning phase to emulate real-world degradation mechanisms. These 
scenarios include the removal of structural components (e.g., diaphragms, bearings), as well as the weakening of joints 
and supports, which result in significant alterations to the load path and boundary conditions. While these damages are 
artificially imposed, they represent plausible deterioration patterns observed in operational bridges, such as localized 
stiffness loss and fatigue-induced weakening. According to Peeters and De Roeck (2001), the severity of these damage 
stages ranges from minor to severe, thereby offering a broad spectrum of structural conditions suitable for evaluating 
the performance of damage detection methods. 

Unlike Case 1, which utilizes acceleration response data from ambient operational vibration tests on four simply 
supported beams, forced vibration testing is employed for damage detection in the Z24 bridge case. This choice allows 
validation of the proposed method's effectiveness and applicability under ambient operational and forced vibration 
conditions. Forced excitation of the bridge deck was achieved using two vertical shakers. 

 

 
Figure 14 A full picture of the Z24 bridge, as well as a closer look at the bridge deck and one of the piers (Maeck and De Roeck, 

2003a). 

 

 
Figure 15 Cross section of the bridge and layout diagram of sensors on the bridge. 

Table 1 Progressive damage scenarios of Z24 bridge (Maeck and De Roeck, 2003b). 

No Scenario Description/simulation 
of real damage cause 

State 1 
State 2 
State 3 

First reference measurement 
Second reference measurement 

Lowering of pier, 20 mm 

• Healthy structure 
• After installation of lowering System 
• Settlement of subsoil, erosion 

199-203 204-208 209-213 214-218 219-223 224-228 229-233 239-243234-238

2
.4

5
2

.1
5

KoppigenUtenstorf

1.50

Bern

Zurich



  

State 4 
State 5 
State 6 
State 7 
State 8 
State 9 

State 10 
State 11 
State 12 
State 13 
State 14 
State 15 
State 16 
State 17 

Lowering of pier, 40 mm 
Lowering of pier, 80 mm 
Lowering of pier, 95 mm 

Tilt of foundation 
Third reference measurement 

Spalling of concrete, 24m2 
Spalling of concrete, 12m2 

Landslide at abutment 
Failure of concrete hinge 
Failure of anchor heads I 
Failure of anchor heads II 

Rupture of tendons I 
Rupture of tendons II 
Rupture of tendons III 

 
 
 
• Settlement of subsoil, erosion 
• After lifting of the bridge to its initial position 
• Vehicle impact, carbonization, and subsequent corro-

sion of reinforcement 
• Heavy rainfall, erosion 
• Chloride attack, corrosion 
• Corrosion, overstress 
 
• Erroneous or forgotten injection of tendon tubes, 

chloride influence 

For each applied damage scenario, 65536 samples per channel were collected at a sampling rate of 100 Hz. To 
facilitate analysis, these 65,536 sample points were divided into 50 segments, with each segment encompassing 
approximately 13.1 seconds of sampling time. An FFT was applied to each segment, yielding 50 pairs of FFT coefficients 
(each pair containing a real and an imaginary part) for each frequency point. This resulted in two matrices: the real matrix 

50wn
A  and the imaginary matrix 50wn

B . In this case study, the frequency range chosen for detecting structural anomalies 

spanned from 0.1 Hz to 45 Hz. Using data from the First reference measurement(S1), the damage indicator threshold 
was established following the method described in Sect. 4.1.2. This threshold, derived from the baseline state S1, was 
compared with the DI values from other states (S2-S17) to detect anomalies. Exceeding this threshold indicates potential 
structural damage. The averaged DI values for the damage scenarios (S2-S17) listed in Table 1 are displayed in Figure. 16. 
Figure 16a presents the DI values based on the real part, while Figure 16b shows the DI values based on the imaginary 
part. These figures clearly show that the DI values for states S2 to S17, whether based on the real or imaginary part, 
exceed the threshold established from the intact State (S1). Therefore, the damage states S2 to S17 can be accurately 
identified.  

 
Figure 16 The real part-based 

TDI and imaginary part-based 

TDI for S2-S17. 

Then, 100 DI samples for each scenario are calculated using MCMC to assess the proposed method's capacity to 
accommodate the uncertainties associated with statistical parameters caused by environmental noise. The parameters 
for the DBSCAN algorithm are set as follows: = 0.15 and MinPts = 4. This clustering technique analyzes 1700 samples 
across 17 different states. A 1% exclusive threshold of DIs, derived from the intact state (S1), is applied to the clustering 
analysis results, as illustrated in Figure 17. It is evident that the DBSCAN technique segregates the samples into distinct 
clusters (different colors indicate different clusters), with each cluster corresponding to its specific structural state. 
Regardless of whether the DI values are derived from the real or imaginary parts, those for clusters corresponding to 
structural states S2 to S17 surpass the threshold established under the intact state, indicating that these states S2 to S17 
are potential damage states, and these damage detection result is the same as shown in Figure 16. Additionally, the 
clustering results reveal that the number of noise points within the results is minimal, which does not significantly 
influence the clustering groups. This effectively demonstrates the proposed method's robustness against the 
uncertainties associated with statistical parameters. 

Figure 18 displays two confusion matrices from the DBSCAN clustering analysis for DI values. Each matrix compares 
actual values (rows) against predicted values (columns) to visualize the classification results. Both matrices demonstrate 
similar high performance, with a correct classification rate of 100% for the damaged state (1600 samples correctly 
classified as damaged in each matrix). The classification accuracy for the intact state is slightly lower at 98% (98 samples 



  

correctly classified as intact), with a misclassification rate of 2% (2 samples incorrectly classified as damaged). There are 
no false negatives in either matrix, but a small number of false positives are present. These high classification rates reflect 
the robustness and reliability of the DI measures. It has been shown that the distribution of DI values is relatively uniform 
across different structural states and remains stable despite the presence of environmental noise. This uniformity and 
stability emphasize the effectiveness of DI values in classifying damage states. 

 

 
 

Figure 17 The clustering results for the real and imaginary parts of DI values. 
 

 
Figure 18 The confusion matrices of the DBSCAN clustering for DI values. 

7 CONCLUSIONS 

In this paper, a novel damage detection method based on the probabilistic divergence of FFT coefficient ratios (FFT-
CRs) is proposed. The method begins by computing FFTCRs from the real and imaginary parts of multi-segment frequency 
response data measured between arbitrary pairs of points. To effectively quantify and characterize the uncertainty of 
statistical parameters, the PDF of these FFTCRs is introduced. The square root distance of the JSD is utilized to measure 
the similarity between two probability distributions, namely the intact state and the possibly damaged state. Subse-
quently, a new damage index is derived by averaging the JSD square root distances across different measurement points 
and selected frequency points. The establishment of a threshold provides a basis for assessing structural damage. Finally, 
the robustness of the proposed method is effectively evaluated using DBSCAN clustering for the classification of DIs 
under different states. 

The proposed method is validated through two experiments: one involving ambient vibration tests on four simply 
supported beams in a laboratory, and the other a field test on the Z24 Bridge under forced vibration. It can be concluded 



  

that the sensitivity of the PDF of the FFT coefficient ratio to damage varies at different frequency points. Thus, determin-
ing sensitive frequency points prior to structural damage assessment is crucial. The methodology proposed in this paper 
integrates multiple frequency points, obviating the need for selecting specific frequencies before assessing structural 
damage. This highlights the practicality and advanced nature of the approach. Research has also shown that this method 
has higher accuracy compared to traditional methods that solely rely on deviations in the PDFs before and after damage 
to determine structural damage. The DBSCAN algorithm is used to evaluate the robustness of the proposed method 
against uncertainty. The results show that DBSCAN accurately detects damaged states, thereby demonstrating the sta-
bility and dependability of the proposed method. Additionally, applying a 1% exclusive threshold for DIs obtained from 
the intact state to the clustering results can also accurately identify structural damage states. 

In summary, this paper introduces a novel approach to damage detection using an innovative algorithm that utilizes 
statistical and data-driven techniques that rely solely on response data. This method analyzes raw data directly without 
any postprocessing to identify potential damage, and it is capable of adapting to various systems and environments by 
learning from actual data instead of depending on potentially inaccurate models. However, the success of the algorithm 
critically depends on the quality of the data and computational capacity. Another challenge is the quantification of struc-
tural damage and the localization of localized damages, which require further in-depth research in the future. 
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