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Abstract 
The main goal of this study is to extend the isogeometric analysis (IGA) further to investigate the free vibration 
of graphene platelet (GPL)-reinforced functionally graded triply periodic minimal surface (FG-TPMS) 
nanoplates (so-called GPLR-FG-TPMS nanoplates) embedded in Pasternak foundation (PF). The computational 
model includes both nonlocal elasticity and strain gradient effects to account for the impact of small-size 
effects inherent in nanostructures. To achieve C1-continuity condition, an IGA framework based on HSDT is 
developed with 7-DOFs per a control point. The motion equation of the nanoplate is derived from Hamilton's 
principle. The calculation program is coded in Matlab environment and verified through comparative 
examples. From here, the influence of geometric parameters, material properties, and boundary conditions 
(BCs) on the frequency of nanoplates is investigated in detail. The results obtained are reference materials for 
further studies as well as in the calculation and design of GPLR-FG-TPMS structures in practice. 
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1  OVERVIEW OF THE RESEARCH PROBLEM 

Graphene platelets (GPLs), a type of nanomaterial, are renowned for their outstanding mechanical, 
thermal, and electrical properties (Arash & Wang, 2011; Rafiee et al., 2009). It consists of one or more layers of 
graphene-2D carbon atoms arranged in a hexagonal lattice randomly distributed in the material matrix, which 
significantly improves the strength of the parent material without much change in the mass of the structure. 
Therefore, it is increasingly widely applied in various industries, such as aerospace, electronics and energy, 
defence (Figure 1). 

 
a) GPL-reinforced in aerospace engineering 

 
b) GPL-reinforced in automotive engineering 

Figure 1 Applications of GPL in practice (Source: Internet). 
As known, TPMS structures are characterized by surfaces that partition space into two equal volumes. 

The parting surfaces have zero mean curvature, allowing to minimize stresses under the action of loads. TPMS 
applications span a wide range, as extensively reviewed by Al-Ketan and Abu Al-Rub (2019). Some innovative 
applications of TPMS structures, readers can refer to the documents (González-Castaño et al., 2022; Singh, 
Sharma, Kumar, & Vaish, 2023; Zhao, Li, Zhang, & Zhai, 2023). It can be seen that, while many types of TPMS, 
such as Sankineni and Ravi Kumar (2022), have been studied, the Primitive (P), Gyroid (G), and I-Wrapped 
Package-Graph (IWP) types are still the most studied and applied. Due to constraints in both computational and 
experimental aspects, TPMS structures are typically examined at specific levels (Al-Ketan & Abu Al-Rub, 2019). 
However, for their application in FG structures, it is essential to characterize their mechanical properties across 
the full relative density range from 0 to 1. To address this, Nguyen-Xuan, Tran, Thai, and Lee (2023) proposed 
an innovative two-phase function to describe the mechanical behavior of three TPMS types: P, G, and IWP, 
enabling the advancement of FG-TPMS structures. Building on this foundation, subsequent studies have 
explored nonlinear behavior in FG-TPMS plates (N. V. Nguyen, Tran, & Nguyen-Xuan, 2024) and size-dependent 
effects in micro-TPMS plates (N. V. Nguyen, Tran, Phung-Van, Lee, & Nguyen-Xuan, 2023). Various structural 
analysis methods have been employed, yet since its introduction in 2005 (Hughes, Cottrell, & Bazilevs, 2005), 
the NURBS-based isogeometric analysis (IGA) has proven to be an effective computational technique for 
investigating complex structures. For example, Q. H. Nguyen, Nguyen, Nguyen, and Nguyen-Xuan (2020) utilized 
IGA with a five-variable plate model to examine both closed-cell and TPMS plates. Also using IGA, Ehsan Ansari 
and Setoodeh (2020); (E Ansari, Setoodeh, & Rabczuk, 2020) conducted vibration analysis of FGM variable-
thickness structures. In these studies, he analyzed frequency-locus veering and mode-shape switching of plates. 

Microscopic and nanoscopic structures exhibit behaviors that classical plate theory cannot adequately 
capture, primarily due to the significant influence of small-scale effects on their mechanics. To address these 
discrepancies, researchers have adopted a dual approach involving experimental studies and computational 
simulations (Liew, He, & Wong, 2004; Stölken & Evans, 1998). However, the experiments and simulations are 
only performed on some basic and specific cases. Therefore, it is necessary to establish a suitable theory and 
model. As a result, several continuum theories have been proposed, including nonlocal elasticity theory (NET) 
(Eringen, 1972, 1983), nonlocal strain gradient theory (NSGT) (Fleck & Hutchinson, 1993), and modified couple 
stress theory (MCST) (Toupin, 1962). 

Subsequent research has extensively explored the impact of small-scale effects on the mechanical 
behavior of nanostructures. Among these theories, NET is widely used due to its ability to balance accuracy with 
mathematical simplicity. For instance, Ahmed Amine Daikh, Drai, Bensaid, Houari, and Tounsi (2021); Ahmed A 
Daikh and Zenkour (2020) analyzed thermal vibration and bending of FGSW nanoplates under various boundary 
conditions using analytical methods. Phung-Van, Thai, Abdel-Wahab, and Nguyen-Xuan (2020) optimized FGSW 
nanoplates through the IGA approach. Arefi and Zenkour (2017) applied a trigonometric plate theory with an 
exact solution to study the static bending of nanoplates in a multiphysics environment. Li, Lai, and Yang (2019) 
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combined an exact solution with NET to predict the upper limit of the nonlocal factor in nanostructures. Thai, 
Ferreira, Nguyen-Xuan, Nguyen, and Phung-Van (2023) utilized the meshfree moving Kriging method with 
higher-order shape functions to analyze nanoplates. Additionally, Zeighampour and Shojaeian (2019) examined 
the buckling behavior of micro/nanoshells made of FG material using Donnell shell theory based on MCST, while 
Li, Zhu, Zhang, Sui, and Zhao (2022) employed NSGT to study the natural frequencies of self-powered 
nanoribbons. 

Although existing studies have applied IGA to a range of problems, its application to the free vibration 
analysis of GPLR-FG-TPMS nanoplates embedded in PF remains unexplored. To bridge this gap and deepen the 
understanding of the behavior of GPLR-FG-TPMS nanoplates, this study introduces an efficient IGA approach 
grounded in HSDT and NSGT. In addition, detailed numerical results are provided to examine the effects of 
geometrical, material parameters, and BCs on the vibration behavior of GPLR-FG-TPMS nanoplates embedded 
in PF. The obtained results are expected to be useful for the calculation, design, fabrication, and application of 
this structure in engineering practice. 

2 BASIS FORMULATION 

2.1 The nanoplate model 

In this paper, considering the GPLR-FG-TPMS nanoplate embedded in PF with different TPMS types: P, G, 
and IWP as shown in Fig. 2. 
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Figure 2 The GPLR-FG-TPMS nanoplate embedded in PF. 

The correlation between relative density and elastic characteristics is introduced by (Nguyen-Xuan et 
al., 2023): 

𝐸(𝑧)

𝐸𝑠
= {

𝐶1
𝐸 × 𝜌𝑛1

𝐸
                               𝜌 ≤ 𝑘𝑚

𝐸

𝐶2
𝐸 × 𝜌𝑛2

𝐸
+ 𝐶3

𝐸                      𝜌 > 𝑘𝑚
𝐸

 (1a) 

𝐺(𝑧)

𝐺𝑠
= {

𝐶1
𝐺 × 𝜌𝑛1

𝐺
                               𝜌 ≤ 𝑘𝑚

𝐺

𝐶2
𝐺 × 𝜌𝑛2

𝐺
+ 𝐶3

𝐺                      𝜌 > 𝑘𝑚
𝐺

 (1b) 

𝑣(𝑧) = {
𝑎1 × 𝑒

𝑏1×𝜌 + 𝑑1                       𝜌 ≤ 𝑘𝑣
𝑎2 × 𝜌

2 + 𝑏2 × 𝜌 + 𝑑2           𝜌 > 𝑘𝑣
 (1c) 

in which 𝜌 = 𝜌(𝑧)/𝜌𝑠 and other parameters are determined by 

𝐶1
𝐸(𝑘𝑚

𝐸 )𝑛1
𝐸
= 𝐶2

𝐸(𝑘𝑚
𝐸 )𝑛2

𝐸
+ 𝐶3

𝐸;  𝐶2
𝐸 + 𝐶3

𝐸 = 1; (2a) 

𝑎1𝑒
𝑏1𝑘𝑣 + 𝑑1 = 0.3; 𝑎2𝑘𝑣

2 + 𝑏2𝑘𝑣+𝑑2 = 0.3,   𝑎2 + 𝑏2 + 𝑑2 = 0.3. (2b) 

with some factors are listed in Table 1. 
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Table 1 The value of factors in Eq. (1) 

Properties Factor 
TPMS types 

P G IWP 

𝐸 𝐶1
𝐸 0.317 0.596 0.597  
𝑛1
𝐸 2.006 2.351 1.782 
𝑛2
𝐸 1.715 1.982  2.188 
𝑘𝑚
𝐸  0.25 0.45 0.35 

𝐺 𝐶1
𝐺 0.705 0.777 0.529 

𝑛1
𝐺 1.189 1.544 1.287 
𝑛2
𝐺 1.715 1.982 2.188 
𝑘𝑚
𝐺  0.25 0.45 0.35 

v 𝑎1 0.314 0.192 2.597 
𝑏1 -1.004  -1.349 -0.157 
𝑎2 0.152 0.402 0.201 
𝑘𝜈 0.55 0.50 0.13  

The mass density is determined by Nguyen-Xuan et al. (2023): 

{
 
 

 
 𝜌(𝑧) = 𝜌𝑠 × 𝜌𝑚𝑎𝑥 [1 − 𝜌0 + 𝜌0 × (

𝑧

ℎ
+
1

2
)
𝑛1

] PD1(𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐)

𝜌(𝑧) = 𝜌𝑠 × 𝜌𝑚𝑎𝑥 [1 − 𝜌0 + 𝜌0 × [1 − cos (
𝜋𝑧

ℎ
)]
𝑛2
] PD2 (𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐)

𝜌(𝑧) = 𝜌𝑠 × [1 − 𝑔𝑚𝜓𝑔 ] PD3 (𝑢𝑛𝑖𝑓𝑜𝑟𝑚)

 (3) 

in which 𝜌0 = 1-𝜌𝑚𝑖𝑛/𝜌𝑚𝑎𝑥 is the porosity factor; 𝑛1 and 𝑛2 are the power-law indexes of porosity distributions, 
defined by 

𝑛1,2 =
𝜌𝑚𝑎𝑥 −

𝑀

𝜌𝑠ℎ

𝑀

𝜌𝑠ℎ
− 𝜌𝑚𝑎𝑥(1 − 𝜌0)

 (4) 

𝑀

𝜌𝑠ℎ
= ∫

2

𝜋

1

0

𝜌𝑚𝑎𝑥[1−𝜌0+𝜌0×(1−𝑢)
𝑛2]

√1−𝑢2
𝑑𝑢 with 𝑢 = 𝑐𝑜𝑠 (

𝜋𝑧

ℎ
) (5) 

𝑀 = ∫ 𝜌(𝑧)𝑑𝑧

ℎ/2

−ℎ/2

 (6) 

Three GPL distributions are determined by the function volume fraction 𝑉𝑟(𝑧): 

{
 
 

 
 𝑉𝑟

1(𝑧) = 𝑆1 [1 − cos (
𝜋𝑧

ℎ
)] GPL1 (𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐)

𝑉𝑟
2(𝑧) = 𝑆2 [1 − cos (

𝜋𝑧

2ℎ
+
𝜋

4
)] GPL2 (𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐)

𝑉𝑟
3(𝑧) = 𝑆3 GPL3 (𝑢𝑛𝑖𝑓𝑜𝑟𝑚)

 (7) 

herein 𝑆1, 𝑆2, and 𝑆3 are the maximum of GPL volume fractions: 

𝑆𝑖 =
𝑉𝑟
𝑡𝑜𝑡𝑎𝑙 ∫ 𝜌(𝑧)/𝜌𝑠𝑑𝑧

ℎ/2

−ℎ/2

∫ 𝑉𝑟
𝑖(𝑧)/𝑆𝑖 × 𝜌(𝑧)/𝜌𝑠𝑑𝑧

ℎ/2

−ℎ/2

 (8) 

with 

𝑉𝑟
𝑡𝑜𝑡𝑎𝑙 =

Λ𝑟𝜌𝑚
Λ𝑟𝜌𝑚 + 𝜌𝑟 − Λ𝑟𝜌𝑟

 (9) 

where Λ𝑟 signifies the GPL’s weight fraction. 

The effective elastic modulus following the Halpin-Tsai model is: 

𝐸𝑠 = [
3

8

1 + 𝜉𝐿𝜂𝐿𝑉𝑟
1 − 𝜂𝐿𝑉𝑟

+
5

8

1 + 𝜉𝑤𝜂𝑤𝑉𝑟
1 − 𝜂𝑤𝑉𝑟

] 𝐸𝑚 (10) 

in which 𝜉𝐿, 𝜂𝐿, 𝜉𝑊, and 𝜂𝑊 parameters are calculated by  



6 

 

𝜂𝐿 =
𝐸𝑟/𝐸𝑚−1

𝐸𝑟/𝐸𝑚+𝜉𝐿
, 𝜂𝑤 =

𝐸𝑟/𝐸𝑚−1

𝐸𝑟/𝐸𝑚+𝜉𝑤
,𝜉𝐿 =

2𝑙𝑟

𝑡𝑟
, 𝜉𝑤 =

2𝑤𝑟

𝑡𝑟
 (11) 

The effective Poisson's ratio and the mass density according to the rule of mixtures are: 

𝑣𝑠 = 𝑣𝑚𝑉𝑚 + 𝑣𝑟𝑉𝑟 (12) 

𝜌𝑠 = 𝜌𝑚𝑉𝑚 + 𝜌𝑟𝑉𝑟 (13) 

In this study, the PF model is used with foundation reaction given by Keshtegar, Motezaker, Kolahchi, and 
Trung (2020): 

𝓡 = 𝑘𝑤𝑤(𝑥, 𝑦) − 𝑘𝑆 ((
𝜕𝑤

𝜕𝑥
)
2

+ (
𝜕𝑤

𝜕𝑦
)
2

) (14) 

where 𝑘𝑤 and 𝑘𝑠 denote spring stiffness and shear stiffness. 

2.2 Nonlocal strain gradient theory 

The governing equation in partial differential form following NSGT is expressed by (Lim, Zhang, & Reddy, 
2015; Lu, Zhang, Lee, Wang, & Reddy, 2007; Soldatos, 1992; Thai, Ferreira, & Phung-Van, 2020): 

𝜎𝑖𝑗,𝑗 − 𝜆∇
2𝜎𝑖𝑗,𝑗  + (1 − 𝜇∇

2)𝑓𝑖 = (1 − 𝜇∇
2)𝜌�̈�𝑖 (15) 

where 𝜎𝑖𝑗 is the local linear stress tensor associated with the classical continuum theory; ∇2 =  
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 is 

Laplace operator; 𝜇 and 𝜆 = ℓ2 are the parameters of the nonlocal and length scale terms, respectively. 

The weak form equation in the form of Hamilton's principle is defined by Li et al. (2022): 

∫ [∫(𝜎𝑖𝑗 − 𝜆∇
2𝜎𝑖𝑗)

𝑉

𝛿𝜀𝑖𝑗  𝑑𝑉 + ∫(1 − 𝜇∇
2)

𝑉

𝜌𝑢
¨

𝑖  𝛿𝑢𝑖  𝑑𝑉 − ∫(1 − 𝜇∇
2)

𝑉

𝑓𝑖  𝛿𝑢𝑖  𝑑𝑉]
𝑡1

𝑡0

𝑑𝑡 = 0 (16) 

with 𝑡0 and 𝑡1 being the initial and final times of the simulation or physical process, their role is clearly defining 
the time domain over which the weak form is valid. Impose the temporal boundary condition 𝛿𝑢𝑖( 𝑡0) =
 𝛿𝑢𝑖( 𝑡1) = 0 for all spatial points in the domain 𝑉, ensuring consistency with the variational formulation. 

2.3 Displacement field of plates based on HSDT 

The displacement field based on HSDT is given by Soldatos (1992): 

𝐮(𝑥, 𝑦, 𝑧) = 𝐮0(𝑥, 𝑦) + 𝑧𝐮1(𝑥, 𝑦) + 𝑓(𝑧)𝐮2(𝑥, 𝑦) (17) 

where 

𝐮 = {
𝑢
𝑣
𝑤
} , 𝐮0 = {

𝑢0
𝑣0
𝑤0
} , 𝐮1 = {

−𝛽𝑥
−𝛽𝑦
0

} , 𝐮2 = {
𝜃𝑥
𝜃𝑦
0

} (18) 

with 𝑢0, 𝑣0, 𝑤0, 𝛽𝑥 = 𝑤0,𝑥, 𝛽𝑦 = 𝑤0,𝑦, 𝜃𝑥, and 𝜃𝑦 are the displacement variables. The transverse shear function 
𝑓(𝑧) = ℎ sinh(𝑧/ℎ) − 𝑧 cosh(1/2). 

Now, the strain field is determined by Reddy (1984): 

{𝜀𝑥𝑥 , 𝜀𝑦𝑦, 𝛾𝑥𝑦}
𝑇
= 𝜀0 + 𝑧𝜀1 + 𝑓(𝑧)𝜀2; (19a) 

{𝛾𝑥𝑧, 𝛾𝑦𝑧, }
𝑇
= 𝜀𝑠0 + 𝑓′(𝑧)𝜀𝑠1 (19b) 

in which 

𝜀0 = {

𝑢0,𝑥
𝑣0,𝑦

𝑢0,𝑦 + 𝑣0,𝑥
} ; 𝜀1 = −{

𝛽𝑥,𝑥
𝛽𝑦,𝑦

𝛽𝑥,𝑦 + 𝛽𝑦,𝑥

} ; 𝜀2 = {

𝜃𝑥,𝑥
𝜃𝑦,𝑦

𝜃𝑦,𝑥 + 𝜃𝑥,𝑦

} ; (20a) 

𝜀𝑠0 = {
𝑤0,𝑥 − 𝛽𝑥
𝑤0,𝑦 − 𝛽𝑦

}; 𝜀𝑠1 = {
𝜃𝑥
𝜃𝑦
}. (20b) 

The stress-strain relationship is determined by Hooke’s law as follows (Reddy, 1984): 



7 

 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧}

 
 

 
 

=

[
 
 
 
 
𝐶11 𝐶12 0
𝐶21 𝐶22   0  
0
0
0

0
0
0

𝐶66
0
0

   

0 0
0 0
0
𝐶55
0

0
0
𝐶44]

 
 
 
 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

 (21) 

where 𝐶𝑖𝑗 refers to the elastic coefficients which can be evaluated through effective material properties Young’s 

modulus 𝐸(𝑧), shear modulus 𝐺(𝑧), and Poisson’s ratio 𝑣(𝑧) may vary through the thickness and are expressed 
as following: 

𝐶11 = 𝐶22 =
𝐸(𝑧)

1 − 𝑣(𝑧)2
; 𝐶12 = 𝐶21 =

𝑣(𝑧)𝐸(𝑧)

1 − 𝑣(𝑧)2
;  𝐶44 = 𝐶55 = 𝐶66 = 𝐺(𝑧) (22) 

2.4 Weak form 

Substituting Eqs. (19) and (21) into Eq. (16), the weak form of the governing equation of free vibration of 
plates resting on PF is as follows: 

𝛿 ∫ ∫ [
1

2
�̂�𝑇𝔻𝑏�̂� +

1

2
𝜸𝑇𝔻𝑠𝜸 −

𝜆

2
(∇2𝜀̂)𝑇𝔻𝑏𝜀̂ +

𝜆

2
(∇2𝛾)𝑇𝔻𝑠𝛾 +

1

2
(1 − 𝜇∇2) �̇̂�𝑇𝕞�̇̂�−

Ω

𝑡1
𝑡0

(1 − 𝜇∇2)𝓡𝑤]  𝑑Ω 𝑑𝑡 = 0. 
(23a) 

Applying the first variation of this action, we obtain: 

∫ 𝛿𝜀̂𝑇
Ω

𝔻𝑏𝜀̂𝑑Ω  −   𝜆 ∫ 𝛿(∇2𝜀̂𝑇)𝔻𝑏𝜀̂Ω
𝑑Ω +∫ 𝛿𝜸𝑇𝔻𝑠Ω

𝜸𝑑Ω  −   𝜆 ∫ 𝛿(∇2𝜸𝑇)𝔻𝑠Ω
𝜸𝑑Ω +

∫ (1 − 𝜇∇2)𝓡𝛿𝑤
Ω

dΩ + ∫ (1 − 𝜇∇2)𝛿�̂�𝐓𝕞�̈̂�
Ω

𝑑Ω = 0. 
(23b) 

where 

𝜀̂ = {

𝜀0
𝜀1
𝜀2
} , 𝛾 = {

𝜀𝑠0
𝜀𝑠1
} ,𝔻𝑏 = [

𝔸 𝔹 ℍ
𝔹 𝔻 𝔽
ℍ 𝔽 𝕃

] ,𝔻𝑠 = [
𝔸𝑠 𝔹𝑠

𝔹𝑠 ℂ𝑠
] (24) 

with 

(𝔸,𝔹,𝔻,ℍ, 𝔽, 𝕃) = ∫ (1, 𝑧, 𝑧2
ℎ

2

−
ℎ

2

, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧)) [

𝐶11 𝐶12 0
𝐶21 𝐶22 0
0 0 𝐶66

 ] 𝑑𝑧; (25a) 

(𝔸𝑠, 𝔹𝑠 , ℂ𝑠) = ∫ (1, 𝑓′(𝑧), 𝑓′2(𝑧)) [
𝐶55 0
0 𝐶44

]
ℎ

2

−
ℎ

2

𝑑𝑧. (25b) 

and 

𝕞 = [

𝓵1 𝓵2 𝓵4
𝓵2 𝓵3 𝓵5
𝓵4 𝓵5 𝓵6

 ],�̂� = {

𝐮0
𝐮1
𝐮2
} (26) 

in which 

(𝓵1, 𝓵2, 𝓵3, 𝓵4, 𝓵5, 𝓵6) = 𝐈3×3 ∫ 𝜌(1, 𝑧, 𝑧2
ℎ/2

−ℎ/2
, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧))𝑑𝑧 (27) 

3 THE IGA PROCEDURE 

The displacement field following NURBS functions is introduced by Tran, Hoang, Lee, and Nguyen-Xuan 
(2024): 

𝒖ℎ(𝜉, 𝜂) = ∑ 𝑰7𝑁𝐼(𝜉, 𝜂)𝒒𝐼

𝑛×𝑚

𝐼=1

 (28) 

here, the displacement vector corresponding to control point 𝐼 is expressed as 𝐪𝐼 = {𝑢0𝐼 𝑣0𝐼 𝑤𝐼 𝜃𝑥𝐼 𝜃𝑦𝐼 𝛽𝑥𝐼 𝛽 𝑦𝐼}𝑇. 
The matrix 𝐈7 is a 7×7 identity matrix, where n and m denote the total number of control points. 

Now, the strain-displacement relation is defined by 

𝜀̂ = {𝜀0 𝜀1 𝜀2}𝑇 = ∑[𝑩𝐼
0 𝑩𝐼

1 𝑩𝐼
2]
𝑇

𝑛×𝑚

𝐼=1

𝒒𝐼 = ∑ �̅�𝐼
𝑏𝒒𝐼

𝑛×𝑚

𝐼=1

 (29a) 
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𝛾 = {𝜀𝑠0 𝜀𝑠1}𝑇 = ∑[𝑩𝐼
𝑠0 𝑩𝐼

𝑠1]
𝑇

𝑛×𝑚

𝐼=1

𝒒𝐼 = ∑ �̅�𝐼
𝑠𝒒𝐼

𝑛×𝑚

𝐼=1

 (29b) 

where 

𝑩𝐼
0 = [

𝑁𝐼,𝑥 0 0

0 𝑁𝐼,𝑦 0

𝑁𝐼,𝑦 𝑁𝐼,𝑥 0
     
0 0 0
0 0 0
0 0 0

    
0
0
0
]; (30a) 

𝑩𝐼
1 = −[

0 0 0
0 0 0
0 0 0

     

0 0 𝑁𝐼,𝑥
0 0 0
0 0 𝑁𝐼,𝑦

    

0
𝑁𝐼,𝑦
𝑁𝐼,𝑥

] ; (30b) 

𝑩𝐼
2 = [

0 0 0
0 0 0
0 0 0

     

𝑁𝐼,𝑥 0 0

0 𝑁𝐼,𝑦 0

𝑁𝐼,𝑦 𝑁𝐼,𝑥 0
    
0
0
0
] ; (30c) 

𝑩𝐼
𝑠0 = [

0       0      
0 0

 
𝑁𝐼,𝑥 0  0

𝑁𝐼,𝑦 0 0
     
−𝑁𝐼 0
0 −𝑁𝐼

] ; (30d) 

𝑩𝐼
𝑠1 = [

0       0      
0 0

 
0 𝑁𝐼  0
0 𝑁𝐼 0

     
0 0
0 0

]. (30e) 

Alternatively, the displacement field is determined by 

�̂� = {𝒖0 𝒖1 𝒖2}𝑇 = ∑[𝑵𝐼
0 𝑵𝐼

1 𝑵𝐼
2]
𝑇
𝒒𝐼

𝑛×𝑚

𝐼=1

= ∑ �̅�𝐼𝒒𝐼

𝑛×𝑚

𝐼=1

 (31) 

with 

𝑵𝐼
0 = [

𝑁𝐼 0 0
0 𝑁𝐼 0
0 0 𝑁𝐼

     
0 0 0
0 0 0
0 0 0

    
0
0
0
]; (32a) 

 𝑵𝐼
1 = −[

0 0 0
0 0 0
0 0 0

     
0 0 𝑁𝐼
0 0 0
0 0 0

    
0
𝑁𝐼
0
] ; (32b) 

𝑵𝐼
2 = [

0 0 0
0 0 0
0 0 0

     
𝑁𝐼 0 0
0 𝑁𝐼 0
0 0 0

    
0
0
0
]. (32c) 

Substituting Eqs. (30) and (31) into Eq. (23), the motion equation of the nanoplate is:  

𝑴�̈� + (𝑲+𝑲𝑓)𝒒 = 𝟎 (33) 

in which 

The stiffness matrix: 

𝑲 = ∫(�̅�𝑏)𝑇

Ω

�̂�𝑏�̅�𝑏𝑑Ω + ∫(�̅�𝑠)𝑇

Ω

�̂�𝑠�̅�𝒔𝑑Ω  − 𝜆 ∫(∇2�̅�𝑏)𝑇

Ω

�̂�𝑏�̅�𝑏𝑑Ω  

− 𝜆 ∫(∇2�̅�𝑠)𝑇

Ω

𝑫𝑠�̅�𝑠𝑑Ω 

(34) 

The foundation stiffness matrix: 
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𝑲
𝑓
= 𝑘𝑤 ∫ [(𝑵𝐼

𝑤)T(𝑵𝐼
𝑤) + 𝜇 [(𝑵𝐼,𝑥

𝑤 )
T
(𝑵𝐼,𝑥

𝑤 ) + (𝑵𝐼,𝑦
𝑤 )

T
(𝑵𝐼,𝑦

𝑤 )]] 𝑑Ω

Ω

+ 𝑘𝑠 ∫ [(𝑵𝐼,𝑥
𝑤 )

T
(𝑵𝐼,𝑥

𝑤 ) + (𝑵𝐼,𝑦
𝑤 )

T
(𝑵𝐼,𝑦

𝑤 )

Ω

+ 𝜇 [(𝑵𝐼,𝑥𝑥
𝑤 )

T
(𝑵𝐼,𝑥𝑥

𝑤 ) + (𝑵𝐼,𝑦𝑦
𝑤 )

T
(𝑵𝐼,𝑦𝑦

𝑤 )]]𝑑Ω 

(35) 

with 

𝑵𝐼
𝑤 = ∑ [0 0 𝑁𝐼      0 0 0    0]𝑛×𝑚

𝐼=1 ; (36a) 

𝑵𝐼,𝑥
𝑤 = ∑ [0 0 𝑁𝐼,𝑥     0 0 0    0]𝑛×𝑚

𝐼=1 ; (36b) 

𝑵𝐼,𝑦
𝑤 = ∑ [0 0 𝑁𝐼,𝑦      0 0 0    0]𝑛×𝑚

𝐼=1 . (36c) 

The mass matrix: 

𝑴 = ∫ (1 − 𝜇∇2)�̅�𝑇𝑰�̅�
Ω

𝑑Ω. (37) 

The BCs are used in this study, introduced by 

- Clamped (C):  

𝑢0 = 𝑣0 = 𝑤0 = 𝛽𝑥 = 𝛽𝑦 = 𝜃𝑥 = 𝜃𝑦 = 0. 

- Simply supported (S): 

𝑢0 = 𝑤0 = 𝛽𝑥 = 𝜃𝑥 = 0 at 𝑦 = 0 & 𝑦 = 𝑏. 

𝑣0 = 𝑤0 = 𝛽𝑦 = 𝜃𝑦 = 0 at 𝑥 = 0 & 𝑥 = 𝑎. 

4 NUMERICAL RESULTS 

This section fully studies the natural frequencies of GPLR-FG-TPMS nanoplates with various input 
parameters. IGA framework uses third-order NURBS elements with a uniform mesh grid. The mechanical 
properties of the components are presented in Table 2.  The basic geometric dimensions of the GPL are 𝑤𝑟 = 
1.5 μm, 𝑙𝑟 = 2.5 μm, 𝑡𝑟 = 1.5 nm.  

The dimensionless parameters are introduced by 

𝐾𝑤 = 𝑘𝑤
𝑎4

𝐷𝑠
;  𝐾𝑠 = 𝑘𝑠

𝑎2

𝐷𝑠
 with 𝐷𝑠 =

𝐸𝑠ℎ
3

12(1−𝜈𝑠
2)

; 𝜔∗ = √
𝜔2𝜌𝑠𝑎

4ℎ

𝐷𝑠

4
. (38) 

Table 2 The fundamental mechanical material properties 

Material Young’s Modulus (GPa) Poisson’s Ratio Density (kg/m³) 

Si3N4 348.43 0.3 2370 
SUS304(2) 201.04 0.24 8166 

GPL 1010 0.186 1062.5 
Copper 130 0.34 8960 
SUS304 200 0.3 8000 

4.1 Verification studies 

Firstly, let's consider the SSSS FG-TPMS square plates. Table 3 provides the dimensionless fundamental 
frequency of plates with different mesh sizes. Noting that the obtained results stabilize at a 9 × 9 mesh grid and 
align closely with those of Tran et al. (2024), who employed IGA based on HSDT with five degrees of freedom 
per point, the 9 × 9 mesh grid is selected for subsequent examples. 

Secondly, the dimensionless frequencies Ω = 10𝜔ℎ√𝜌𝑚/𝐸𝑚 of SSSS FGM (Si3N4/SUS304-2) square 

nanoplate in this study are used for comparison purposes with the results of Sobhy and Radwan (2017) using an 
exact solution based on Quasi-3D theory and Ahmed A Daikh and Zenkour (2020) employing a closed 
formulation based on HSDT are provided in Table 4. Observing that the obtained frequency is slightly smaller 
than the reference frequency. The decreasing difference corresponds to larger nonlocal factor 𝜇 and thinner 
nanoplates. From the above two examples, the correctness of the proposed method can be confirmed. 
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Table 3 The dimensionless fundamental frequency of FG-TPMS (SUS304) plates with 𝑎/ℎ = 10 
(𝜌𝑚𝑎𝑥 = 1 , 𝑀/(𝜌𝑠ℎ) = 0.35, and Λ𝐺𝑃𝐿 = 0 wt.%) 

TPMS types Mesh grid 
𝜌0 = 0.75 𝜌0 = 0.85 𝜌0 = 0.95 

PD1 PD2 PD1 PD2 PD1 PD2 

P 5 × 5 3.7053 4.1912 3.4545 4.3888 3.1585 4.4558 
7 × 7 3.7052 4.1911 3.4544 4.3887 3.1584 4.4558 
9 × 9 3.7052 4.1911 3.4544 4.3887 3.1584 4.4558 
11 × 11 3.7052 4.1911 3.4544 4.3887 3.1584 4.4558 
13 × 13 3.7052 4.1911 3.4544 4.3887 3.1584 4.4558 

Tran et al. (2024) 3.7051 4.1936 3.4543 4.3894 3.1584 4.4619 

G 5 × 5 3.6611 4.0849 3.3617 4.2469 3.0434 4.3005 
7 × 7 3.6610 4.0848 3.3616 4.2468 3.0433 4.3005 
9 × 9 3.6610 4.0848 3.3616 4.2468 3.0433 4.3005 
11 × 11 3.6610 4.0848 3.3616 4.2468 3.0433 4.3005 
13 × 13 3.6610 4.0848 3.3616 4.2468 3.0433 4.3005 

Tran et al. (2024) 3.6608 4.0872 3.3614 4.2496 3.0432 4.3135 

IWP 5 × 5 3.7604 4.1446 3.5141 4.3021 3.2079 4.3472 
7 × 7 3.7603 4.1445 3.5140 4.3020 3.2078 4.3472 
9 × 9 3.7603 4.1445 3.5140 4.3020 3.2078 4.3472 
11 × 11 3.7603 4.1445 3.5140 4.3020 3.2078 4.3472 
13 × 13 3.7603 4.1445 3.5140 4.3020 3.2078 4.3472 

Tran et al. (2024) 3.7602 4.1469 3.5139 4.3042 3.2076 4.3584 

 

Table 4 The dimensionless frequencies Ω of SSSS FGM square nanoplates 

ℎ/𝑎 𝜇 

𝑛 = 1 𝑛 = 5 

Sobhy and 
Radwan 
(2017) 

Ahmed A 
Daikh and 
Zenkour 
(2020) 

Present 
Sobhy and 
Radwan 
(2017) 

Ahmed A 
Daikh and 
Zenkour 
(2020) 

Present 

0.1 0 0.82250 0.82296 0.81658 0.66485 0.66510 0.65828 
0.52 0.80292 0.80338 0.79715 0.64903 0.64927 0.64262 
1 0.75165 0.75208 0.74624 0.60758 0.60781 0.60158 
1.52 0.68443 0.68483 0.67951 0.55325 0.55346 0.54778 
22 0.61484 0.61520 0.61041 0.49699 0.49719 0.49208 

0.05 0 0.21083 0.21098 0.20921 0.17077 0.17086 0.16888 
0.52 0.20581 0.20596 0.20423 0.16671 0.16679 0.16486 
1 0.19267 0.19280 0.19119 0.15606 0.15614 0.15434 
1.52 0.17544 0.17556 0.17409 0.14210 0.14218 0.14053 
22 0.15760 0.15771 0.15639 0.12765 0.12772 0.12624 

4.2 Free vibration problem 

 This part investigates the impact of different input parameters on the free vibration of GPLR-FG-TPMS 
square nanoplates made of copper (Cu) with the given parameters: 𝑎 = 𝑏 = 10, 𝜌𝑚𝑎𝑥 = 1, and 𝑀/(𝜌𝑠ℎ) = 0.35. 
 Firstly, Figure 3 presents the first six mode shapes of SSSS GPLR-FG-TPMS square nanoplates. It can be 
seen that mode 2 and mode 3 as well as mode 5 and mode 6 have the same shape (equal frequency), only 
differing in viewing direction due to the symmetrical plate with S boundary at four edges. In addition, Table 5 
also provides the first six dimensionless frequency SSSS square nanoplates with different patterns, GPL and PDs 
distributions. The results show the simultaneous impact of these parameters on the natural frequencies of the 
nanoplates. The individual frequencies have different values for each distribution, so they affect the effective 
material properties Young’s modulus 𝐸(𝑧), shear modulus 𝐺(𝑧), and Poisson’s ratio 𝑣(𝑧)  of the nanoplates. 

Secondly, the combined impact of various input parameters on the dimensionless fundamental frequency 
of square nanoplates is presented in Tables 6 and 7. Across all nanoplate configurations, we observe the 
expected trend: as the value of 𝜇 increases, the fundamental frequency decreases. The stiffness-softening 
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mechanism inherent in small-scale structures becomes more pronounced as the nonlocal factor 𝜇 increases. On 
the other hand, as the value of 𝑙 increases, the fundamental frequency also rises, aligning with expectations. 
These findings demonstrate that tuning the length scale 𝑙 provides a means to observe the stiffness-hardening 
behavior in small-scale plates. Additionally, the PD2 porosity distribution (symmetric) leads to the highest 
fundamental frequency, whereas the PD1 and PD3 distributions show almost the same frequency. The 
simultaneous effect of these two parameters on the frequency of the plate can be observed more clearly in 
Figures 4 and 5. Besides, it is observed that nanoplates with P and IWP types have higher frequencies than 
nanoplates with G type. 

Thirdly, Figures 6, 7 and 8 present the effect of elastic foundation on the fundamental frequency of square 
nanoplates. Observing that the increase of 𝐾𝑤 and 𝐾𝑠 leads to an increase in the fundamental frequency of the 
plate, however, the increase of 𝐾𝑠 leads to a faster increase in frequency than the increase of 𝐾𝑤. It can be 
affirmed that the shear layer supports more effectively than the spring layer. In this investigation, the nanoplate 
with IWP type resulted in the largest frequency, while the nanoplate with G and P types resulted in 
approximately the same frequencies. 

Next, Figures 9, 10 and 11 illustrate the contrasting effects of the porosity factor 𝜌0 on the fundamental 
natural frequencies of square nanoplates for different GPL distributions. As 𝜌0 increases, the mechanical 
responses of PD1 and PD2 distributions diverge completely. Specifically, a higher 𝜌0 results in a decrease in the 
fundamental frequency of PD1 distribution while it increases the fundamental frequency for PD2 distribution. 
Besides, the nanoplates with PD3 distribution have constant frequency with the change of 𝜌0. Additionally, the 
nanoplates with the IWP type exhibit the highest frequencies, whereas G type structures demonstrate the 
lowest performance. Observing Figures 9a, 10a, and 11a, we see that when the porosity factor 𝜌0 = 0.8, the 
natural frequencies corresponding to both P type and G type are nearly identical. This suggests that at this 
intermediate density level, the influence of geometric configuration on the vibration behavior is comparable for 
both types. However, a clear trend emerges outside this point: when 𝜌0 > 0.8, the frequency associated with 
the P type becomes higher than that of the G type, whereas for 𝜌0 < 0.8, the G type exhibits a higher frequency 
than the P type. This behavior indicates a nonlinear dependence of the natural frequency on both material 
distribution and structural geometry. Specifically, at lower densities (𝜌0 < 0.8), the G type may distribute 
material more efficiently, resulting in relatively higher stiffness and, consequently, higher frequency. On the 
other hand, at higher densities (𝜌0 > 0.8), the P type may better utilize the added material to enhance stiffness, 
leading to a higher natural frequency. Although the frequency difference between the two types remains 
relatively small across the density range, this trend highlights the significant role of structural geometry in 
tailoring the vibration behavior of porous or architected materials. Such insights are particularly valuable in the 
optimal design of lightweight materials where both stiffness and dynamic performance are critical, as in 
aerospace, automotive, and structural engineering applications. 

Additionally, we study the impact of GPL distribution on fundamental frequencies of square nanoplates. 
Figure 12 highlights the significant impact of both GPL distribution and weight fraction Λ𝐺𝑃𝐿 on frequencies of 
nanoplates. The addition of the reinforcement phase to the metal matrix material clearly results in a significant 
improvement in overall stiffness. Moreover, the most effective reinforcement configuration is attained by 
combining the IWP type with GPL1 distribution. Conversely, the nanoplate with G type and GPL2 distribution 
exhibits the lowest frequency. When evaluating the effectiveness of GPL dispersion throughout the thickness of 
each TPMS structure, the GPL1 shows the most effective reinforcement, followed by GPL2 and GPL3 distributions. 

Finally, Figures 13 and 14 show the first six fundamental frequencies of SSSS nanoplates with PD1 and PD2 
distributions. It is observed that the 2nd and 3rd as well as the 5th and 6th frequencies are equal. This is because 
the square nanoplate is subjected to the same simply supported on all four edges, the natural vibration modes 
corresponding to these frequencies differ only in the viewing direction.
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Table 5 The first six dimensionless frequency SSSS square nanoplates with different pattern types, GPL and PD distributions (𝑎/ℎ = 40, 𝐾𝑤 = 25, 𝐾𝑠 = 25, 
𝜌0 = 0.85, 𝜇 = 𝑙 = 1, and Λ𝐺𝑃𝐿 = 1 wt.%) 

Pattern 

types 
Frequencies 

PD1 PD2 PD3 

GPL1 GPL2 GPL3 GPL1 GPL2 GPL3 GPL1 GPL2 GPL3 

P 𝜔1
∗ 6.5048 6.4759 6.4961 6.8709 6.8175 6.8287 6.5525 6.5179 6.5179 

𝜔2
∗ 8.4141 8.3461 8.3943 9.0049 8.9628 8.941 8.5408 8.4574 8.4574 

𝜔3
∗ 8.4141 8.3461 8.3943 9.0049 8.9628 8.941 8.5408 8.4574 8.4574 

𝜔4
∗ 8.9944 8.9922 8.9285 9.0238 8.9816 8.9598 8.5524 8.5524 8.5502 

𝜔5
∗ 8.9944 8.9922 8.9285 9.0238 8.9816 8.9598 8.5524 8.5524 8.5502 

𝜔6
∗ 9.0132 9.011 8.9472 9.3102 9.1916 9.217 8.5703 8.5703 8.5681 

G 𝜔1
∗ 6.4853 6.4602 6.4783 6.8365 6.7858 6.7964 6.5343 6.5021 6.5021 

𝜔2
∗ 8.4059 8.3399 8.3871 8.6277 8.5588 8.5255 7.9607 7.9607 7.9586 

𝜔3
∗ 8.4059 8.3399 8.3871 8.6277 8.5588 8.5255 7.9607 7.9607 7.9586 

𝜔4
∗ 8.6092 8.6093 8.5073 8.6458 8.5768 8.5433 7.9774 7.9774 7.9753 

𝜔5
∗ 8.6092 8.6093 8.5073 8.6458 8.5768 8.5433 7.9774 7.9774 7.9753 

𝜔6
∗ 8.6272 8.6273 8.5251 9.2445 9.1328 9.1572 8.5248 8.4426 8.4426 

IWP 𝜔1
∗ 6.5232 6.4914 6.5131 6.8649 6.8133 6.8242 6.5519 6.5175 6.5175 

𝜔2
∗ 8.5244 8.4398 8.4348 8.5529 8.4876 8.4557 7.7358 7.7358 7.7338 

𝜔3
∗ 8.5244 8.4398 8.4348 8.5529 8.4876 8.4557 7.7358 7.7358 7.7338 

 𝜔4
∗ 8.5408 8.5318 8.4525 8.5708 8.5054 8.4734 7.752 7.752 7.750 

 𝜔5
∗ 8.5408 8.5318 8.4525 8.5708 8.5054 8.4734 7.752 7.752 7.750 

 𝜔6
∗ 8.5587 8.5497 8.497 9.331 9.2185 9.2437 8.5995 8.5087 8.5088 
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 Table 6 The effect of the nonlocal factor on dimensionless fundamental frequency SSSS square nanoplates with different pattern types, GPL and 
porosity distributions (𝑎/ℎ = 15, 𝐾𝑤 = 100, 𝐾𝑠 = 50, 𝜌0 = 0.7, 𝑙 = 1, and Λ𝐺𝑃𝐿 = 1 wt.%) 

Nonlocal 
factor (𝜇) 

Pattern 
types 

PD1 PD2 PD3 

GPL1 GPL2 GPL3 GPL1 GPL2 GPL3 GPL1 GPL2 GPL3 

0 P 7.8441 7.7807 7.8062 7.9227 7.8431 7.8566 7.8015 7.752 7.7584 
G 7.829 7.7701 7.7932 7.8966 7.8243 7.8367 7.7849 7.7394 7.7455 

IWP 7.8505 7.7881 7.8121 7.917 7.8424 7.8552 7.7994 7.7513 7.7577 

1 P 7.8031 7.7487 7.7709 7.8706 7.8023 7.8142 7.7675 7.7252 7.7310 
G 7.7903 7.7398 7.7600 7.8485 7.7864 7.7973 7.7535 7.7146 7.7200 

IWP 7.8086 7.7551 7.7761 7.8659 7.8017 7.8131 7.7658 7.7247 7.7303 

2 P 7.7732 7.7254 7.7453 7.8326 7.7725 7.7833 7.7428 7.7058 7.7110 
G 7.7621 7.7177 7.7359 7.8133 7.7587 7.7687 7.7307 7.6966 7.7016 

IWP 7.7781 7.7311 7.7498 7.8285 7.7721 7.7824 7.7413 7.7053 7.7105 

4 P 7.7325 7.6937 7.7105 7.7807 7.732 7.7413 7.7093 7.6795 7.684 
G 7.7239 7.6878 7.7032 7.7655 7.7212 7.7298 7.6998 7.6723 7.6766 

IWP 7.7367 7.6985 7.7143 7.7776 7.7319 7.7407 7.7082 7.6792 7.6837 

Table 7 The effect of the length scale on dimensionless fundamental frequency SSSS square nanoplates with different TPMS types, GPL and porosity 
distributions (𝑎/ℎ = 20, 𝐾𝑤 = 75, 𝐾𝑠 = 25, 𝜌0 = 0.8, 𝜇 = 1, and Λ𝐺𝑃𝐿 = 1 wt.%) 

Length 
scale (𝑙) 

Pattern 
types 

PD1 PD2 PD3 

GPL1 GPL2 GPL3 GPL1 GPL2 GPL3 GPL1 GPL2 GPL3 

0 P 6.6777 6.6241 6.6605 6.9497 6.857 6.8871 6.6994 6.6449 6.6510 
G 6.6645 6.6148 6.6486 6.9127 6.8279 6.8556 6.6813 6.6309 6.6367 

IWP 6.6989 6.6410 6.6790 6.9373 6.8515 6.8798 6.6980 6.6445 6.6507 

0.5 P 6.6881 6.6322 6.6701 6.9714 6.8751 6.9063 6.7106 6.6538 6.6602 
G 6.6743 6.6224 6.6576 6.9329 6.8448 6.8736 6.6918 6.6392 6.6452 

IWP 6.7102 6.6498 6.6895 6.9585 6.8693 6.8988 6.7093 6.6534 6.6598 
1 P 6.7189 6.656 6.6986 7.0351 6.9283 6.9628 6.7440 6.6802 6.6873 

G 6.7034 6.6451 6.6846 6.9923 6.8945 6.9264 6.7228 6.6638 6.6705 
IWP 6.7437 6.6759 6.7204 7.0207 6.9218 6.9544 6.7425 6.6798 6.6869 

2 P 6.8370 6.7484 6.8081 7.2720 7.1280 7.1742 6.8717 6.7821 6.7918 
G 6.8154 6.7329 6.7885 7.2145 7.0820 7.1249 6.8421 6.7589 6.7680 

IWP 6.8721 6.7767 6.8391 7.2530 7.1194 7.1632 6.8699 6.7817 6.7914 
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a) Mode 1, 𝜔1

∗ = 7.5984 
 

b) Mode 2, 𝜔2
∗ = 9.6876 

 
c) Mode 3, 𝜔3

∗ = 9.6876 
 

d) Mode 4, 𝜔4
∗ = 11.1491 

 
e) Mode 5, 𝜔5

∗ = 11.8329 
 

f) Mode 6, 𝜔6
∗ = 11.8329 

Figure 3 The first six mode shapes of SSSS nanoplates  (𝑎/ℎ = 50, 𝐾𝑤 = 50, 𝐾𝑠 = 50, 𝜌0 = 0.8, 𝜇 = 0, 𝑙 = 0, 
Λ𝐺𝑃𝐿 = 0.8 wt.%, P type, PD3 and GPL3 distributions) 
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a) GPL1 distribution 

 
b) GPL2 distribution 

 
c) GPL3 distribution 

Figure 4 The effect of 𝜇 and 𝑙 parameters on the fundamental frequency of SSSS nanoplates with PD1 distribution  
(𝑎/ℎ = 10, 𝐾𝑤 = 100, 𝐾𝑠 = 25, 𝜌0 = 0.9, and Λ𝐺𝑃𝐿 = 0.75 wt.%) 

 

 
a) GPL1 distribution 

 
b) GPL2 distribution 

 
c) GPL3 distribution 

Figure 5 The effect of 𝜇 and 𝑙 parameters on the fundamental frequency of SSSS nanoplates with PD2 distribution  
(𝑎/ℎ = 10, 𝐾𝑤 = 100, 𝐾𝑠 = 25, 𝜌0 = 0.9, and Λ𝐺𝑃𝐿 = 0.75 wt.%) 
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a) GPL1 distribution 

 
b) GPL2 distribution 

 
c) GPL3 distribution 

Figure 6 The effect of 𝐾𝑤 and 𝐾𝑠 parameters on the fundamental frequency of SSSS nanoplates with PD1 
distribution  (𝑎/ℎ = 25, 𝜌0 = 0.8, Λ𝐺𝑃𝐿 = 1 wt.%, 𝜇 = 1 and 𝑙 = 1) 

 
a) GPL1 distribution 

 
b) GPL2 distribution 

 
c) GPL3 distribution 

Figure 7 The effect of 𝐾𝑤 and 𝐾𝑠 parameters on the fundamental frequency of SSSS nanoplates with PD2 

distribution  (𝑎/ℎ = 25, 𝜌0 = 0.8, Λ𝐺𝑃𝐿 = 1 wt.%, 𝜇 = 1 and 𝑙 = 1) 
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a) GPL1 distribution 

 
b) GPL2 distribution 

 
c) GPL3 distribution 

Figure 8 The effect of 𝐾𝑤 and 𝐾𝑠 parameters on the fundamental frequency of SSSS nanoplates with PD3 
distribution  (𝑎/ℎ = 25, 𝜌0 = 0.8, Λ𝐺𝑃𝐿 = 1 wt.%, 𝜇 = 1 and 𝑙 = 1) 

 
a) PD1 distribution 

 
b) PD2 distribution 

 
c) PD3 distribution 

Figure 9 The effect of 𝜌0 parameter on the fundamental frequency of CCCC nanoplates with GPL1 distribution 

(𝑎/ℎ = 15, 𝐾𝑤 = 𝐾𝑠 = 50, Λ𝐺𝑃𝐿 = 1.2 wt.%, 𝜇 = 1 and 𝑙 = 1) 
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a) PD1 distribution 

 
b) PD2 distribution 

 
c) PD3 distribution 

Figure 10 The effect of 𝜌0 parameter on the fundamental frequency of SCSC nanoplates with GPL2 distribution 
(𝑎/ℎ = 15, 𝐾𝑤 = 𝐾𝑠 = 50, Λ𝐺𝑃𝐿 = 1.2 wt.%, 𝜇 = 1 and 𝑙 = 1) 

 
a) PD1 distribution 

 
b) PD2 distribution 

 
c) PD3 distribution 

Figure 11 The effect of 𝜌0 parameter on the fundamental frequency of SSCC nanoplates with GPL3 distribution 
(𝑎/ℎ = 15, 𝐾𝑤 = 𝐾𝑠 = 50, Λ𝐺𝑃𝐿 = 1.2 wt.%, 𝜇 = 1 and 𝑙 = 1) 
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a) PD1 distribution 

 
b) PD2 distribution 

Figure 12 The influence of GPL weight fraction on the fundamental frequency of SSSS nanoplates (𝑎/ℎ = 40, 

𝐾𝑤 = 𝐾𝑠 = 25, 𝜇 = 2, 𝑙 = 2, and 𝜌0 = 0.9) 

 
a) GPL1 distribution 

 
b) GPL2 distribution 

 
c) GPL3 distribution 

Figure 13 The first six fundamental frequencies of SSSS nanoplates with PD1 distribution (𝑎/ℎ = 25, 𝐾𝑤 = 75, 

𝐾𝑠 = 25, 𝜇 = 1, 𝑙 = 2, and 𝜌0 = 0.9) 
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a) GPL1 distribution 

 
b) GPL2 distribution 

 
c) GPL3 distribution 

Figure 14 The first six fundamental frequencies of SSSS nanoplates with PD2 distribution (𝑎/ℎ = 25, 𝐾𝑤 = 75, 

𝐾𝑠 = 25, 𝜇 = 1, 𝑙 = 2, and 𝜌0 = 0.9) 

5 CONCLUSIONS 

This study successfully developed an IGA procedure to study the frequency of GPLR-FG-TPMS nanoplates 
embedded in PF. To achieve this, an advanced mathematical mechanical model was used. This model used a 
NURBS-based isogeometric discretization framework based on HSDT and NSGT for accurate displacement 
approximation. The model allows for the clear observation of the significant influence of the nonlocal factor and 
length scale on the vibration of GPLR-FG-TPMS nanoplates. Comprehensive parametric studies yielded critical 
insights, including: 

➢ The proposed numerical model demonstrably captured the vibration characteristics of GPLR-FG-TPMS 

nanoplates with high accuracy; 

➢ Increasing the nonlocal factor 𝜇 leads to a decrease in frequency while increasing the length scale 𝑙 

increases the frequency of the GPLR-FG-TPMS nanoplate; 

➢ The study revealed that for the PD1 distribution, increasing the porosity parameter leads to a decrease 

in structural stiffness. Conversely, the PD2 distribution exhibited the opposite behavior, with stiffness 

increasing as the porosity parameter grew; 

➢ The addition of GPLs demonstrably enhances the nanoplate stiffness. This effect is particularly evident 

at low concentrations, where even a small amount of GPLs can significantly strengthen the structure; 

➢ As anticipated, the elastic foundation substantially increases the nanoplate stiffness, resulting in a 

higher fundamental frequency. Notably, the study revealed that 𝑘S parameter has a more pronounced 

effect compared to the 𝑘w parameter; 
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➢ The numerical results obtained in this study are expected to contribute to the general understanding of 
GPLR-FG-TPMS nanoplate vibrations as well as open up some potential future research directions such 
as dynamic problems, nonlinear problems, GPLR-FG-TPMS nanostructure optimization problems, and 
so on. 
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