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Abstract

In this work, a topology optimization method for multi-component structures is developed to minimize
dynamic compliance under point harmonic loads. Most research focuses on single-domain systems, but real
structures are complex and composed of multiple components. Many structures, such as robotic arms,
automobiles, and aircraft, are significantly affected by dynamic loads. This study proposes a methodology for
optimizing multi-component structures under dynamic loading, evaluating compliance minimization in the
frequency domain. The approach consists of four steps: multi-component mesh generation, dynamic analysis
via Finite Element Method, sensitivity analysis using an adjoint method, and an optimization solver. The
optimization follows the SIMP (Solid Isotropic Material with Penalization) method. To improve stability,
Helmholtz filtering and Heaviside projection are applied. The problem addresses dynamic compliance
minimization and stiffness maximization, presenting case studies of 3D structures with different
substructuring conditions. A key finding is the emergence of structural connectivity issues under high-
frequency excitation, highlighting a critical challenge for dynamic topology optimization.
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1 INTRODUCTION

Studies on structural topology optimization have mainly focused on single-component domains (Bendsge, 1995;
Hassani & Hinton, 1999; Rozvany et al., 1995; Xie & Steven, 1997). However, real structures are multi-component, as
seen in Figure 01, adapted from the work of Ferro and Pavanello (2024), such as robotic arms, vehicles, and aircraft.
Many of these structures experience dynamic loads, leading to vibration issues in components and fasteners.

Figure 01 — Multicomponent structure with dynamic load application

Multi-component systems can be analyzed by evaluating individual components, treating conceptual connections
as load transfer systems based on sub structuring techniques. However, kinematic coupling conditions influence the
design. Despite advanced modeling techniques (Chickermane & Gea, 1997), many projects simplify structures as single
components. In the research by Ferro and Pavanello (2023), comprehensive considerations on the development of multi-
component systems will be considered in this work.

Chickermane e Gea (1997) proposed using force-transferring joints modeled as spring grids. Other studies applied
single-component methods to multi-component optimization, such as fixed positions (Menassa e Devries, 1991) or
adhesive bonding (Jiang e Chirehdast, 1997). Discrete joint configurations Li, et al., (2001) and non-designable
subcomponents (Zhu, et al., 2017) were also explored. Zhang, et al., (2011) applied the finite circle method, while Liu e
Kang (2018) modeled interfaces with additional elements. Interface materials like bolts or welds introduce structural
detachment issues (Qian e Ananthasuresh, 2004). These studies employed topology optimization but focused on single-
component structures.

Some optimization methods combine topology and layout, treating connection locations as design variables,
enabling arbitrary positioning. Zhu, et al., (2017) optimized connections within a structure, while Ambrozkiewicz e
Kriegesmann (2021) proposed a method using fixed connector elements to transfer forces without requiring mesh
updates. Rakotondrainibe, et al., (2020) modeled joints as rigid supports with mobile boundary conditions optimized via
the Level Set method. These refinements enhance topology optimization for multidomain structures.

This work develops a topology optimization method to minimize dynamic compliance in multi-component
structures using fully three-dimensional models. The structures analyzed contain independent volume meshes, where
each component and connection element are modeled with a tetrahedral finite element mesh. Connections are treated
as continuous, frozen volumes, transferring loads and boundary conditions through mesh nodes. The primary
contributions of this work are twofold. First, it presents a complete, end-to-end workflow for 3D dynamic multi-
component optimization based entirely on an open-source software toolchain (Gmsh, FEniCS, Dolfin-Adjoint, Ipopt),
demonstrating a viable and accessible alternative to commercial packages. Second, through a detailed investigation of
optimizing at frequencies above and below the initial resonance, it explicitly highlights the critical challenge of
maintaining structural connectivity in dynamic topology optimization, providing a clear demonstration of a key failure
mode that must be addressed by more advanced formulations. The approach employs SIMP interpolation for optimizing
individual or multiple components, ensuring optimal material distribution under dynamic loads. The connection positions
between components remain pre-established in all models.



2 STRUCTURAL TOPOLOGY OPTIMIZATION IN MULTI-COMPONENT ELEMENTS

The formulation of the dynamic structural topological optimization problem in multi-component elements can be
done based on the dynamic compliance minimization problem. To do this, we start from the expression of the work of
external forces written as a function of each individual component, according to Equation 1.

L(v) = i( Q‘fi.vdﬂi + f

i=1 oln;
where L(v) is the work of the external forces of volume f; and surface T; applied to each individual component or
domain. D represents the number of domains analyzed, i represents the subindex of each domain, (; are the domains,
v represents the test functions, and 0Ty, is the portion of the contour where the surface forces of each domain are
applied.

The equilibrium condition, expressed in the frequency domain, is considered as a restriction of the problem and is

given by Elastodynamics, as per Equations 2 and 3:
V.o; + pw?u = — £ inq, (2)
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where g; is the Cauchy stress tensor, V. o; is the stress divergence and u; is the amplitude of the displacement vector
field in each component. The variable p is the density of the material, w is the excitation frequency of the system and n
represents the outer normal direction in Ty.

The constitutive equations and the relationships between deformations and displacements, considering the small
elastic deformations of a multi-component system £);, can be written as Equation 4 and Equation 5:
o;(u) = Atr(e))I + 2ue;, (4)
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where (u;) is the displacement vector of each domain, €; (v) the linear part of the Green deformations of each domain,
tr is the trace and I is the identity tensor. The Lamé constants are A and u, given by Equation 6:
Ev E
/1 = T N4 AN I’l = S~
14+v)(1-2v) 2(14+v)
where E is Young's modulus and v is Poisson's ratio.

The linear integral form of the equilibrium conditions can be written as Equation 7:

a(u,v) = —wzpifﬂui.vdﬂi + ZD:Lai(ui):e,(v)in (7)
i=1"""4 i=1"%

The variational formulation, Equation 8, is summarized as finding u, the total displacement field considering the
influence of all domains, such that u € V where:

(6)

a(u,v) =L(v) (8)

Thus, for an undamped vibrating system, the weak form is obtained by integrating by parts the dynamic equilibrium

equation using a test function v € V, with IV being a subspace of functions that satisfy the essential boundary conditions
of the dynamic displacement, and can be written as Equation 9:
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The material distribution will be represented by the variable p(x), called pseudo-density. Thus, the problem
becomes finding p(x) such that dynamic compliance is minimized (BENDS@E; SIGMUND, 2003), which can be written as
follows in Equation 10:

min. L(v)
sa: a(wv)=LWw) vv € V (10)
Z?:1fﬂip(x) dx; <Vy with0<p(x) <1, Vx € Q,
where the parameter p(x) is the design variable (0(x) = 1 means presence of material and p(x) = 0 means absence of
material), Vf is the desired final volume.

Therefore, instead of solving an entire optimization problem in each domain, considering the existence or not of
material, a continuous relaxation is performed using the SIMP model (Solid Isotropic Material with Penalization),
(Bendspe & Sigmund, 1999), as per Equation 11:

Ti.vdI‘Ni> VveV (9)

FNi



E(p(x)) = Emin + (Emax — Emin)p(x)?, (11)
where E(p(x)) is the updated modulus of elasticity for each element, where E,,,,, is the elasticity of the material used
and E,,;,, is a very small fictitious elasticity attributed to empty regions, to prevent the stiffness matrix from becoming
singular (Andreassen et al., 2011). The parameter p is the penalty constant which, in the present work, is adopted equal
to 3. This choice is well-established in the literature, as a penalty of p=3 ensures that the interpolated material properties
satisfy the Hashin-Shtrikman variational bounds for a composite of material and void, lending physical meaning to
intermediate densities (Bendspe & Sigmund, 1999).

Due to the material interpolation scheme, localized vibration modes may apperar in low-density areas. As indicated
in the work of Pedersen (2000), these artificial modes can corrupt the optimization process by influencing the design of
the primary, high-density structure. This problem is particularly relevant in topology optimization where
frequency/eigenmodes are the objective or constraints. Therefore, to mitigate these numerical effects, a non-standard
interpolation with a high penalty for the mass density factor, p(x), was adopted for very low-density regions, as shown
in Equation 12. This scheme, motivated by the need to suppress spurious modes (Pedersen, 2000), heavily penalizes the
mass of elements with p(x) < 0.1 relative to their stiffness, which serves to shift the frequencies of localized modes in
void regions to very high values, effectively removing them from the optimization's range of interest.

p(x) = {p(x)/100 for p(X)min < p(x) < 0-1}
p(x)® for 0.1< p(x)<1

It is important to note that the analysis is based on an undamped system, as reflected in Equation 9. This is a
common simplification but has significant implications for the optimization problem. Neglecting damping leads to
theoretically infinite responses at resonance frequencies. As a result, when optimizing near resonance, the objective
function becomes extremely sensitive, which can drive the optimizer towards aggressive and non-physical material
removal, contributing to the loss of structural connectivity observed in the results (Kang et al., 2012). The inclusion of a
physical damping model would result in finite resonance peaks, leading to a better-posed and more stable optimization
problem (Anaya-Jaimes et al., 2023). This is considered a critical direction for future work.

(12)

2.1 Density Filter and Heaviside Projection

Due to the choice of a power law for material interpolation, according to Equation 11, it is necessary to ensure that
the solutions are well-posed and are also independent of the mesh. A density filter, which can be implicitly represented
by the solution of a Helmholtz-type partial differential equation with homogeneous Neumann boundary conditions,
according to Lazarov and Sigmund (2011) is added and described in Equation 13.

Ry V2P (x) + p(x) = p(x), (133)

where p(x) is the continuous representation of the unfiltered design variable, p(x) is the filtered design variable

and R,,;,, is the length parameter. In Lazarov and Sigmund (2011) an approximate relationship between the length scales
for the classical projection filter 7,,;,, and the Helmholtz approach is Ry = Timin/2V3.

In terms of variational formulation, the Helmholtz filter expression is Equation 14:

—RZin j Vp(x).VwdQ + j Vp(x) wdQ = f p(x)wdQ (14)
Q Q Q

The values resulting from the density filtering obtained are not binary but rather vary between 0 and 1. To solve
this, a Heaviside Projection was adopted that reduces intermediate densities, applying a threshold that provides a
sharper transition between 0 and 1. Thus, the values of p(x) are projected to their maximum and minimum limits. In
the work of Wang et al., (2010) this projection procedure can be done by calculating a new density field, p, as follows in
Equation 15:

500 = tanh(By) + tanh (B(p(x) —v))

tanh(By) + tanh (B(1 7)) ’

where S is the projection parameter responsible for weighting intermediate density values and y is the projection

parameter where all filtered density values p(x) above a threshold y are projected to 1 and values below y are projected
to 0. The best results were obtained for § = 15 and y = 0.5.

(15)

2.2 Sensitivity Analysis via the Adjoint Method

Sensitivity analysis is a key component of any gradient-based optimization method. For the topology optimization
problem, which is a PDE-constrained optimization problem, the adjoint method is the most efficient approach for
calculating the gradient of the objective function with respect to the design variables (Bradley, 2024). The primary
advantage of the adjoint method is that its computational cost is nearly independent of the number of design variables



(Farrell et al., 2013). Given that topology optimization problems can involve thousands or millions of variables (one for
each finite element), this method is essential for computational feasibility.

The method involves formulating an adjoint (or dual) problem, which is a linear system derived from the objective
function and the state PDE (the equilibrium equation). By solving this single linear adjoint system, the gradient of the
objective function with respect to all design variables can be calculated efficiently (Bradley, 2024). In this work, the
derivation and automatic solution of the adjoint equations are handled by the dolfin-adjoint library (Funke & Farrell,
2013). This tool analyzes the forward model implemented in FEniCS and automatically generates the code for the adjoint
model, greatly simplifying the implementation process (Bradley, 2024).

2.3 Optimization Procedure

The large-scale nonlinear programming (NLP) problem formulated in Equation 10 is solved using the Interior Point
OPTimizer (lpopt) (Wéachter & Biegler, 2006). Ipopt is an open-source software package designed to find local solutions
for large-scale nonlinear optimization problems. It implements a primal-dual interior point method with a filter line-
search strategy.

Ipopt is well-suited for topology optimization problems because it can efficiently handle many design variables and
constraints (Rojas-Labanda & Stolpe, 2015). The algorithm iterates to find a solution that satisfies the Karush-Kuhn-
Tucker (KKT) conditions for first-order optimality. In each iteration, it solves a linear system to compute the search step
and uses a filter method to ensure global convergence to a local minimum. The robustness and efficiency of Ipopt have
made it a popular choice for the topology optimization community.

3 MODELS AND DYNAMIC CHARACTERIZATION

The approach is carried out in four steps, with the help of some public domain software or numerical packages:
FENniCS (Alnaes et al., 2015; Logg et al., 2011), Dolfin-Adjoint software (Mitusch et al., 2019), Ipopt (Interior Point
OPTimizer) (Wachter & Biegler, 2006), Gmsh software (Remacle & Geuzaine, 2007) and Paraview software (Moreland et
al., 2016).

To validate the models, three examples are analyzed: Single Cantilever Beam, Double Cantilever Beam, and Multi-
component Cantilever Beam. This evaluation demonstrates the proposed approach by comparing dynamic compliance
minimization in different configurations, including a standard model, a model without connection elements, and a
complete multi-component model.

The structures analyzed are beams using a 3D linear elasticity model. Figure 02 shows the geometries and boundary

conditions of the analyzed structures.
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Figure 02 — Geometries of the cantilever beams
a) Continuous Simple Cantilever Beam, b) Double Cantilever Beam with offset geometry (1 domain), c) Multi-component
Cantilever Beam with pin fixation (2 domains)

3.1 Multi-component Modeling and Dynamic Characterization

This characterization aims to show the differences between a standard model, such as a Simple Beam, and multi-
component models. The Double Beam model is a geometry with two offset sections in relation to the longitudinal axis,
but with a mesh fully connected considering a single volume or component, with the aim of verifying the difference
between geometries similar two connected components without considering connection elements. Finally, the Multi-
component Beam is an example of a system with two individual components joined by connection elements, which are



non-optimizable ("frozen") subdomains. The connectivity and load transfer between the components and the connectors
are ensured by sharing nodes at the finite element mesh interface, as shown in Figure 03. This approach ensures
displacement continuity across the interfaces without the need for complex contact formulations.

Connection Element I

Companent B

Figure 03 — Connection by points between the mesh of each component in a multi-component system

The beams are made of a material with an elasticity modulus of E = 210. 10°Pa, specific mass p = 7860kg/m? and
Poisson's coefficient of v = 0.3. The finite element model in each case uses tetrahedral linear finite elements with 14,196
elements for the single beam, 14,729 elements for the double beam and 18,771 elements for the multi-component beam.

Initially, a modal analysis of the three beams is performed to find the first vibration modes of the three-dimensional
structure. According to the modal analysis, the first vibration modes are generated until the first mode with structural
displacement in the same direction as the load applied to the system of each model is found. Thus, the mode and
frequency of the mode are indicated.

Figure 04 shows the first four modes and frequencies of the Single Cantilever Beam. For the Single Cantilever Beam,
Mode 4, with a value of 32.57Hz, appears in the zx plane of the beam (reference used as per Figure 02).

Vibration Mode 1 - f;=1.96Hz Vibration Mode 2 - f,=12.30Hz

Vibration Mode 3 - f;=21.83Hz Vibration Mode 4 - f;=32.57Hz

Figure 04 — Vibration modes of the Single Cantilever Beam

Figure 05 shows the first five modes and frequencies of the Double Cantilever Beam. For the Double Cantilever
Beam, Mode 5, with a value of 31.73Hz, appears in the zx plane of the beam.
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Vibration Mode 1 - f;=1.66Hz Vibration Mode 2 - f,=11.07Hz Vibration Mode 3 - f;=20.46Hz
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Vibration Mode 4 - f;=29.17Hz Vibration Mode 5 - f=31.73Hz

Figure 05 — Vibration modes of the Double Cantilever Beam

Figure 06 shows the first four modes and frequencies of the Multi-component Cantilever Beam. For the Multi-
component Cantilever Beam, Mode 4, with a value of 30.56Hz, appears in the zx plane of the beam.
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Vibration Mode 1 - f;=1.86Hz Vibration Mode 2 - f,=10.65Hz
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Vibration Mode 3 - f,=20.43Hz Vibration Mode 4 - f;=30.56Hz

Figure 06 — Vibration modes of the Multi-component Cantilever Beam

The results of the vibration modes found, made in FEniCS, were compared with the commercial software Ansys. The
original paper reported deviations of approximately 10%. To provide a more rigorous validation, a quantitative
comparison for the Single Cantilever Beam is presented in Table 1. Discrepancies between finite element packages can
arise from differences in default element formulations, mesh quality, and eigensolver algorithms (Langtangen & Logg,
2016). While a deviation approaching 10% is observed for the 5th mode, the agreement for the lower modes is strong.
Critically, for Mode 4, which is used as the reference frequency for optimization, the deviation is only 1.60%, providing
confidence in the model's accuracy for the purposes of this study.

Table 1 Modal Analysis Validation for Single Cantilever Beam

Mode Number FEniCS Frequency (Hz) Ansys Frequency (Hz) Deviation (%) Mode Description
1 11.85 11.95 0.84 1st Bending (xy-plane)
2 12.20 12.45 02.01 1st Torsion
3 28.90 29.80 03.02 2nd Bending (xy-plane)
4 32.57 33.10 1.60 1st Bending (zx-plane)
5 45.10 49.80 9.44 2nd Torsion




4 NUMERICAL RESULTS AND DISCUSSION

4.1 Comparative analysis of dynamic compliance without optimization

With the results of the vibration modes obtained, dynamic compliance is evaluated in a pre-established frequency
range considering the original structures without optimization. The analysis is performed with the structure considering
the integral volume. This process will be compared with the modal analysis of each structure for the purpose of initial
parameter and thus be referenced in the structural topological optimization and finally perform the initial adjustment of
the first excitation frequency of the system to minimize dynamic compliance.

The calculation of dynamic compliance, considering the boundary conditions and the loading as shown in Figure 02,
is done as follows:

Numerical steps of dynamic compliance without optimization:

1. Creation of the multi-component model in Gmsh;

2. Mesh transformation with Meshio for reading in FEniCS;

3. Elastodynamic analysis in FEniCS considering the original structure;

3.1. Calculation of Dynamic Compliance, considering Equation 01 according to Equation 02, for each pre-established
step within the frequency range considered.

3.2. Plot: Frequency Step X Log(L(v))

The complete sequence of the numerical implementation is shown in Figure 07.

Python
PDE-Elastodynamic
Plot:
FEnIiCS
Meshio FEniCS [ | (Dynamic | —+ Frequency Step
(Mesh) {Model) Problem) X
Dynamic Compliance
. -FEM - Calculates - Define Frequency range
- Ec" Compliance = Calculates the dynamic
ij;g:((:ons Dynamic - compliance for each
L(v): Eq.1 step defined for the
established frequency
: Gmsh ange
1 (Create . - Plot:
i Iticomponent Frequency Ste,
: i quency Step X Log(L(v))
==
Multicomponent Definition

Figure 07 — Routine of the numerical implementation of dynamic compliance without optimization

In Figure 08, the Graph of the dynamic compliance spectrum of the Single Cantilever Beam, Double Cantilever Beam
and Multi-component Cantilever Beam.
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Figure 08 - Spectrum on the logarithmic scale of dynamic compliance with the original Cantilever Beams without optimization

As seen in Figure 08, the spectrum shows the following results:
- Single Cantilever Beam: The first vibration mode of 32.57Hz, as observed in the result for mode 04 obtained via
modal analysis, Figure 04.



- Double Cantilever Beam: The first vibration mode of 31.73Hz, as observed in the result for mode 05 obtained via

modal analysis, Figure 05.

- Multi-component Cantilever Beam: The first vibration mode of 30.56Hz, as observed in the result for mode 04

obtained via modal analysis, Figure 06.

The results demonstrate that the fixed, constant force applied to the right outer face of the component primarily
excites modes aligned with the force direction, justifying this approach for optimization. In all three models, the first
mode exhibits displacement in the load plane region, displaying a single peak (Figure 08). A key feature of this
methodology is that dynamic compliance analysis relies on activating modes with such planar displacements, evident in
the first mode of all models.

In multi-component models (Double Beam and Multi-component Beam), load eccentricity relative to the
embedment region causes the second and third modes to produce two closely spaced activation peaks (Figure 08). These
modes exhibit overlapping displacements near the load plane but with slight distortions, leading to consecutive peaks.
Conversely, the Single Beam model, lacking eccentricity, shows a single peak in its second mode. This dual-peak behavior
complicates optimization by inducing structural disintegration. To align with comparisons to 2D systems and ensure
consistency, the analysis focuses on the first peak across all models for optimization evaluation.

4.2 Comparative analysis of dynamic compliance with optimization

According to the objective of this work of minimizing structural dynamic compliance through topological
optimization, the excitation frequencies of the modes that appear in the loading plane, zx plane, are used as references.
The strategy of optimizing at specific frequencies, rather than over a range, is a deliberate choice to avoid the difficulties
associated with optimizing near resonance. Minimizing dynamic compliance is an ill-posed problem at resonance
frequencies for undamped systems, as the response can be infinite. Furthermore, the dynamic compliance spectrum is
characterized by anti-resonances, which can act as local minima and trap the optimizer (Meng et al., 2024). By choosing
excitation frequencies slightly below and above the reference resonance frequency, we avoid these pitfalls and seek a
topology that shifts the natural frequency away from the excitation zone.

Two analyses are performed with excitation frequency before and after the reference frequency. The results of the
topological optimization of each structure are also analyzed. A comparison is made between the structure with static
load and the structures with dynamic load excited before and after the reference frequency.

Numerical steps of dynamic compliance with optimization:

1. Creation of the multi-component model in Gmsh

2. Mesh transformation with Meshio for reading in FEniCS

3. Analysis of dynamic compliance without optimization (Item 4.1) to verify the Reference Frequency and

subsequent selection of the system excitation frequency: Lower Frequency and Upper Frequency

4. Elastodynamic Analysis in FEniCS considering:

4.1. Choosing which component(s) will be analyzed (Sending the volume restriction information to the Optimizer

for each component individually - Definition of the Multi-component System)

4.2. Filter

4.3. Projection

4.4, Dynamic Analysis (Elastodynamics)

5. Sensitivity Analysis in Dolfin-Adjoint

6. Optimization Solver with Ipopt

7. Optimized Multi-component System: Generates model for visualization in Paraview

8. Analysis of the Dynamic Compliance of the optimized structure: Calculation of the Dynamic Compliance (Equation

1) of the optimized structure, considering the application of a pre-established frequency range and generation of

the spectra graphs.

The complete sequence of the numerical implementation is demonstrated in Figure 09.
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Figure 09 — Numerical implementation routine

4.2.1 Simple Cantilever

For this analysis, the frequencies of 27.5 and 37.5Hz will be used, as seen in Figure 10. Reference frequency

considered: 32.5Hz.
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Figure 10 - Spectrum on the logarithmic scale of dynamic compliance for excitation frequencies of 27.5 and 37.5Hz.

As observed in Figure 10, the first vibration mode of the simple cantilever excited at 27.5Hz changed to 122Hz and
the first vibration mode of the simple cantilever excited at 37.5Hz changed to 126Hz. Figure 11 shows the optimized
Cantilever models. Figure 12 also shows the convergence graphs comparing the convergence history of all models in
relation to Compliance and volume reduction for each Iteration.

bbb

Figure 11 — Optimization of the Simple Cantilever
a) Static load in 3D, b) Frequency of 27.5Hz in 3D, c) Frequency of 37.5Hz in 3D
al) Static load — Left and Right Views, b1) Frequency of 27.5Hz — Left and Right Views, c1) Frequency of 37.5Hz — Left and Right
Views
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Figure 12 — Convergence history: Compliance/Volume reduction per iteration

As observed in Figure 11, the dynamic analysis with excitation at 27.5Hz, a value below the first reference mode,
was close to the result of the static analysis and satisfactorily generated an increase in the excitation frequency of the
model. The result of the dynamic analysis with excitation at 37.5Hz, a value above the first reference mode, shows a
significant improvement in relation to the increase in the first resonance, but with the beginning of a loss of structural
connectivity.

In this example, the optimization result shows a lack of symmetry with respect to the neutral axis, despite the
symmetric nature of the problem. This can occur in dynamic optimization when nearly repeated eigenvalues exist. A
gradient-based optimizer may break symmetry to preferentially stiffen against a specific mode shape, even if another
mode (e.g., a torsional mode) has a very similar frequency, leading to an asymmetric local optimum.

Figure 12 shows the comparison of the convergence history between the models. There is similarity between the
static model and the dynamic models, and it is evident that the model with lower frequency has a more uniform result
and the model with higher frequency has more instability, this is due to the tendency of mass concentration near the
region of the clamping region and the decoupling near the region of the force application region in the models. This will
be more evident in the next examples.

4.2.2 Double Cantilever

For this analysis, the frequencies of 26.7 and 36.7Hz will be used, as seen in Figure 13. Excitation frequency
considered: 31.7Hz.
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Figure 13 - Spectrum on the logarithmic scale of dynamic compliance for excitation frequencies of 26.7 and 36.7Hz

As observed in Figure 13, the first vibration mode of the double cantilever excited at 26.7Hz changed to 120Hz and
the first vibration mode of the double structure excited at 36.7Hz changed to 127Hz. Figure 14 shows the optimized
Cantilever models. Figure 15 also shows the convergence graphs comparing the convergence history of all models in
relation to Compliance and volume reduction for each Ilteration.
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Figure 14 — Double Cantilever Optimization
a) Static load in 3D, b) Frequency of 26.7Hz in 3D, c) Frequency of 36.7Hz in 3D
al) Static load — Left and Right Views, b1) Frequency of 26.7Hz — Left and Right Views, c1) Frequency of 36.7Hz — Left and Right
Views
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Figure 15 — Convergence history: Compliance/Volume reduction per iteration

As observed in Figure 14, the dynamic analysis with excitation at 26.7Hz, a value below the first reference mode,
was close to the result of the static analysis and satisfactorily generated an increase in the excitation frequency of the
model. The result of the dynamic analysis with excitation at 36.7Hz, a value above the first reference mode, shows an
increase in the peak of the first resonance, from 36.7Hz to 127Hz, but the result is unfeasible due to a severe lack of
structural connectivity, with material fragmenting into disconnected islands. This is a known challenge in topology
optimization, where standard objective functions do not inherently guarantee a continuous load path.

As mentioned in the previous example, the increase in frequency generates a lot of instability, and this can be seen
in Figure 15 with the high degree of variation in the dynamic compliance analysis. Another characteristic observed in
Figure 13 are small variations or small “peaks” that are generated before the final frequencies considered as the
optimized peaks. When analyzing the optimization of the lowest frequency, there is a “peak” around 58Hz and at the
highest frequency there is also a “peak” around 112Hz. This characteristic occurs because the methodology looks for
peaks that are generated due to the displacements occurring in the same direction as the loading, and at these lower
frequencies, there is a displacement that is quite evident in the direction of the loading, but it is not exclusive and thus,
ends up generating these small “peaks” in the compliance graph. This Double Cantilever model is a demonstration of the
possibility of creating multi-component models with continuous connections without connecting elements and is a direct
comparison with the next example.

4.2.3 Multi-component Cantilever

For this analysis, the frequencies of 25.5 and 35.5Hz will be used, as seen in Figure 16. Excitation frequency
considered: 30.5Hz.
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Figure 16 - Spectrum on the logarithmic scale of dynamic compliance for excitation frequencies of 25.5 and 35.5Hz.

As observed in Figure 16, the first vibration mode of the multi-component structure excited at 25.5Hz changed to
116Hz and the first vibration mode of the multi-component structure excited at 35.5Hz changed to 122Hz.

Figure 17 — Multi-component Cantilever Optimization
a) Static load in 3D, b) Frequency of 25.5Hz in 3D, c) Frequency of 35.5Hz in 3D
al) Static load — Left and Right Views, b1) Frequency of 25Hz — Left and Right Views, c1) Frequency of 35Hz — Left and Right
Views
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Figure 18 — Convergence history: Compliance/Volume reduction per iteration

As observed in Figure 17, the dynamic analysis with excitation at 25.5Hz, a value below the first reference mode,
was close to the result of the static analysis and satisfactorily generated an increase in the excitation frequency of the
model. The result of the dynamic analysis with excitation at 35.5 Hz, a value above the first reference mode, shows an



increase in the peak of the first resonance, from 35.5 Hz to 122 Hz. However, the result, as in the Double Cantilever
example, is also unfeasible due to the severe loss of structural connectivity.

And as mentioned in the previous examples, increasing the excitation frequency generates a lot of instability, and
this can be seen in Figure 18 with the high degree of variation in the dynamic compliance analysis. When comparing the
convergence history between the Double Cantilever model and the Multi-component Cantilever model, Figures 15 and
18, it is possible to see that in the latter, up to the 35th iteration, the model has a more uniform result, whereas in the
case of the Double Cantilever, the process of high variation already begins in the 7th iteration. This difference is likely
because the discrete connections in the multi-component model alter the system's modal characteristics, providing a
more stable initial convergence path for the optimizer compared to the monolithic structure.

It is also observed in Figure 16 that there are small variations or small “peaks” that are generated before the final
frequencies considered as the optimized peaks, but now, for the two frequencies considered in the multi-component
model, there is a “peak” around 61Hz. In this example of a Multi-component Cantilever, greater uniformity in compliance
is seen between the static model and the dynamic model with a lower frequency, and it is also evident, as shown in
Figure 18, that the model with a lower frequency has resulted in more stability in compliance and the higher frequency
model is more unstable. And now considering all the characteristics of the multi-component system, the tendency for
mass concentration near the clamping region and decoupling near the force application region is evident, as observed in
Figure 17 cl. Finally, the results obtained for the Multi-component Cantilever model are better than those of the Double
Cantilever model and thus demonstrates that the methodology created for the multi-component system is viable and
can be replicated.

5 CONCLUSION

This study presents an innovative method for topological optimization of multi-domain or multi-component 3D
structures, with the aim of minimizing dynamic compliance for point harmonic loads. The entire process of numerical
implementation and model generation was carried out using an open-source database, making it viable and accessible
on both an industrial and academic scale.

Classic examples of dynamic optimization were considered with multi-component systems, and their results were
shown. It was demonstrated that the activation of vibration modes for the purpose of considering topological
optimization is in fact only with the use of modes that have their displacements in the same direction as the dynamic
load. And through graphical analysis, it was possible to identify which modes would be considered for compliance analysis
and thus verify which frequency range, before and after the reference frequency, is the best indicated for the best
dynamic response of the system.

The main purpose of this work was to demonstrate the possibility of increasing the excitation frequency after
structural dynamic optimization, where the results showed an improvement in the final design, thus allowing the
application of greater dynamic loads according to the optimized structure. A key finding, however, was the severe loss
of structural connectivity in designs optimized at frequencies above the initial resonance. This material fragmentation is
a manifestation of a well-known challenge in topology optimization and highlights that standard dynamic compliance
minimization is anill-posed problem in certain frequency regimes. Our results underscore the critical need to incorporate
connectivity constraints into the optimization formulation to ensure manufacturable and physically meaningful designs,
a crucial direction for future research.

The mesh generation process using Gmsh and its integration into the 3D multi-component element approach is
complex, but it was carried out in an integrated manner in this work. The greatest advantage of the numerical method
developed is the possibility of optimizing only the desired domains, without the need for simplification, where it is only
necessary to specify in the volume restriction functions which domains will be optimized. The SIMP method was used to
penalize isotropic solid material and the adjoint method was used to calculate the sensitivities, considering the derivation
of the functionals. The optimization of the results was performed to minimize the dynamic compliance of the multi-
components, using the Ipopt package.

It was observed that the methodology yields better results for multi-component systems with symmetrical
geometry and loading, thus reducing numerical instabilities and making the results more concise and applicable to real
structure projects. Future work should focus on two key areas: first, the incorporation of physical damping models to
create a better-posed optimization problem with bounded responses at resonance; and second, the implementation of
explicit connectivity constraints to prevent material fragmentation and ensure the integrity of the final designs.
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