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Abstract 
An indentation contact problem between a cylinder stamp and a bonded elastic layer is investigated in this 
paper. Based on the Navier equation and boundary conditions, the contact problem is transformed into a 
governing formula, which is in the form of singular integral equation of the first kind, through Fourier 
transform techniques. By using dimensionless parameterization tricks, a numerical scheme for inverse contact 
problem is built, and the contact stresses could be obtained directly through the coupled solution of governing 
equation and equilibrium relationship. Thereinto, the contact pressure is approximated by Chebyshev 
polynomials, and the governing equation is solved numerically. The reliability of the numerical results is 
demonstrated through comparison with existing analytical solutions, and the influences of Poisson’s ratio and 
layer thickness on contact stresses are discussed. Results show that, contact pressure converges to a Hertzian 
type when the layer thickness increases, and both increasing Poisson's ratio and reducing the layer thickness 
can sharpen the contact stress. 
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1 INTRODUCTION 

Due to the appropriate size and special performance, thin layer on a substrate is widely applied in engineering 

manufacturing, such as protective coating in bearings, and the pavement on roadbed etc. As an attractive topic in the classic 

contact mechanics, the indentation problem of the thin elastic layer has been investigated by Keer [1] and other researchers. 

Lebdev and Ufliand [2] present harmonic functions for Papkovich-Neuber equation, and facilitate the solution about 

indentation problem of a circular cross-section stamp and the elastic layer. Aleksandrove et al. [3, 4] put forward three-

dimensional contact problems of elastic layer, and solve the Lame equation through Fourier transform techniques to get 

the contact stresses. Meijer [5] fills the gape of asymptotic solutions for incompressible layer, and the work has been 

improved by Alblas and Kuipers [6] then. The solution of layered contact problems mentioned above, was predominantly 

based on Fredholm equation frameworks, although singular integral equation was employed to govern contact problem. 

To the best of authors’ knowledge, this phenomenon was prevalent prior to the mid-20th century. 

Literatures show that, in recent years, the framework has been sporadically developed and applied in contact problem 

of layer-substrate system. Aleksandrove [7, 8] solve a doubly periodic contact problems, and then focuses on the 

improvement of the asymptotic solution about calculation of the integral kernel. Scholars [9] try to build a law between the 

pressure and the displacement of coating in the axisymmetric indentation problem. Others [10] applies the theory to 

investigate the effect of thickness on the elastic behavior. However, its requirement to convert singular integral equations 

into Fredholm equations undoubtedly complicates the solution theory. This limitation persisted until Erdogan [11] developed 

a dedicated solution framework specifically for singular integral equations at 1970s. The Gauss-Jacobi quadrature [12] and 

Jacobi polynomials [13, 14] have been widely applied to solve various contact problem, such as static contact problem of 

layers supported by elastic half-plane [15] or Winkler foundation [16], and receding contact problem of elastic layer [17] etc.  

On the other hand, some scholars approached the problem through simplified contact theories, with the most notable 

being Johnson’s hypotheses on layer that "plane sections remain plane after compression" [18]. On the basis of the 

assumption, Jaffer[19, 20] decomposes the integral kernel of the governing equation to two parts, and presents a new 

asymptotic solution for thin layer. The numerical solution is extended to three-dimensional problems by Barber[21] then. 

Conway et al.[22] investigate a compact problem of a thin layer. Contact problem of transversely isotropic elastic layer [23] 

is studied, and asymptotic solution for axisymmetric contact pressure is obtained. For practical engineering problem 

involves thin layer, Matthewson[24] pays attention to the optimization of protective coating design in the contact problems. 

However, Johnson’s theory inevitably fails when applied to thick-layered bodies.  

The numerical solution framework from Erdogan remains mainstream, despite efforts to explore innovative 

algorithms, such as application of Green’s function by Greenwood and Barber[25] or others [26, 27] to indentation problem 

of elastic layer. It should be noted that, meanwhile, Erdogan’s solution framework is rooted in Riemann boundary value 

problem theory [28]. This poses significant challenges in engineering applications, as the theoretical foundation is overly 

complex. Even for fundamental problem like frictionless contact of layer-substrate system, index calculation is tedious and 

error-prone. Fortunately, the application of Chebyshev polynomial in Gladwell’s work [29] seems to point out a new path, 

and a same work is from Turhan [30], which circumvent Rieman boundary value problem theory.  

In literatures, layer-substrate contact problems are mostly addressed as direct problem, for which contact stress and 

region are determined under given loads, e.g. Argatov et al.[31, 32] devotes articular layer in biomechanics and develops 

asymptotic solution, or others focuses on contact problem of anisotropic linear elastic materials of the layer [33]. Inverse 

problems, which require solving for unknown contact tractions from prescribed deformation, are rarely presented otherwise. 

By recognizing that the method from Turhan [30] is confined to a mathematical framework, this study aims to establish 

a systematic solution for inverse problem of frictionless contact in layer-substrate system through methodology integration. 

The paper is organized as follows. By applying Fourier transform, the problem is formulated by a singular integral equation 

of the first kind in the 2nd section. In 3rd section, dimensionless parameterization treatment for inverse problem is presented, 

and flow chart of the calculation process is built. Based on the orthogonality properties and the Gauss-Chebyshev 

formula[34], numerical solution for singular integral equation is provided in 4th section. The numerical results of contact 

pressure are validated in 5th section, and the influences of thickness or Poisson’s ratio on contact stresses are discussed. 

2 PROBLEM FORMULA 

A layer-substrate structure is shown in Fig.1, the layer is elastic and bonded to a rigid substrate. Indentation between 

a cylindrical stamp and the layer is gradually progressed under a normal load P . The layer thickness is h , and the radius 

of stamp is defined as R . The problem could be discussed in plane-strain frame since the stamp is long enough in the 

longitudinal direction. The contact region between the stamp and layer is indicated by a red arc with radius a , and 

indentation depth is defined as d . Displacement components in the plane coordinate ( ),x y  are characterized by ( ),u v
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From Navier’s equation, the equilibrium in plane coordinate could be wrote as 
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where   is Kolosov’s constant with 3 4 = − , and   is Poisson’s ratio. 

 

Fig.1 The indentation contact model of a stamp and a bonded elastic layer 

By defining the Fourier transforms of displacements u  and v  for layer as following 
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Applying the property about the Fourier transforms of the derivatives of a function below 
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where F  means the Fourier transform. 

Eq. (1) and (2) thus could be transformed to 
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where U , V  is the abbreviation of ( ),U y , ( ),V y  respectively. 

Solving the second-order differential equations above, one could obtain 

 ( ) ( )y yU A By e C Dy e −= + + +  (8) 
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where A , B , C , and D  are unknown functions of  , which would be determined from boundary conditions. 

According to the elastic equations in plane frame, 
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where   is Lamé constant, and G  is the shear modulus. The stresses for the layer could be obtained as 
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where 
x
T , y
T  and xy

T  are abbreviation of ( ),
x
T y , ( ),

y
T y  and ( ),

xy
T y , which are the Fourier transforms of 
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x
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y
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xy
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The boundary conditions for the problem could be defined as follows 
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By applying (16), the unknown constants could be obtained from Eqs. (6) and (7) as  
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Substituting equations above into the Eq. (14) and (15), we could obtain stress components at surface of the layer as 
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where 
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Thus, the gradient of the displacements at the surface of the layer could be expressed with respect to x  giving 
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where F   means the inverse Fourier transform. 

Applying the equations (13) to (15), Eq. (24) and Eq. (25) could be rewritten as 
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Substituting equations (22) and (23) into (26), then the Eq. (24) could be rewritten as 
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Expanding Eq. (28), and applying equations (17) and (18), we could obtain the governing formula of the problem as 
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The equilibrium condition for the contact pressure could be expressed as 
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and the contact stress x  at the layer surface can be calculated through the following equation, which is obtained 

directly with Fourier transform techniques, 
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3 SOLUTION FOR INVERSE PROBLEM 

Defining the following non-dimensional quantities 
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Eqs. (31), (34) and (35) could be rewritten as  

 ( ) ( ) ( )
( )1 1

11 1

1 1 s
H r s k r s ds ds

s r




 − −
= − −

− ,  (39) 

 ( )
1

1
1s ds

−
=  (40) 

 ( ) ( ) ( ) ( )
1

2
1

1
,0x r r s K r s ds  

 −
= − + −  (41) 

where 

 ( )
4

1

G a
H r r

P a R
=

+ /
 (42) 

 ( )
( )

( ) ( )
( )1 20 2

4 2
1

1 4 2

2

2
k r s r s d

 
 

 



 


 −
   = + −  

+ + +  

, si n
cosh

si nh
 (43) 

 ( ) ( )
2 2 2

2 2 2 20

2 8 2
cos

1 4 2 cosh 2
K r s r s d

  
 

    

 − + +
− = −

+ + +  (44) 

 ( )
( ), 0

,0
/

x

x

r
r

P a


 =  (45) 

The non-dimensional contact pressure can be approximated with the second kind Chebyshev polynomials ( )iU s  as 
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where i  are unknown coefficients to be determined. For inverse problems, the contact pressure is determined from 

prescribed deformation, and it is reasonable to remove the non-dimensional force ( )G P a/ /  on the right hand side 

of Eq. (46) therefore. The contact pressure Eq. (46) is furtherly rewritten as 
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The governing Eq. (39) is modified to 
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Fig.2 Flow chart of the calculation process 
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The equilibrium Eq. (40) is furtherly rewritten as 
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As different from the direct problem, the iterative scheme is not necessary anymore here. The computational process is 

therefore remarkably simple, and proceeding through a streamlined sequence of steps as also shown in Fig. 2: (1) the Poisson’s 

ratio  , dimensionless parameters   and   are input as known quantities, with the computational term count n  in Eq. (46) 

predefined; (2) based on the numerical tool in section 4, Eq. (49) is discretized into a system of linear equations, and the unknown 

coefficients 
i

%  are determined through least-squares method under the assumption that j n= ; (3) the contact pressure Eq. (47) 

is substituted into the equilibrium Eq. (51) to obtain the dimensionless external force ( )G P a/ / ; (4) coefficients 
i

  are 

obtained from Eq. (48) and the final expression for contact pressure ( )s  are determined.  

The contact stress ( ),0x r  could be obtained after substitution of ( )s  into Eq. (41). The kernel could be calculated 

through the Gauss-Chebyshev formula., and the contact pressure is only available inside the contact region (-1, 1).  

4 NUMERICAL TOOL 

The known function ( )H r%  is defined by the first kind Chebyshev polynomial ( )rTi  as  



 
  

 

 

 ( ) ( ) ( )
0

n

n i i
i

H r H r H T r
=

 = %  (52) 

where 

 ( ) ( )
1

1

1 1
1

2

1

n

i m i m
m

H H x T x
n

+

=


+

  (53) 

and the dash in   means the first term in the sum is to be halved. 

Substituting Eq. (46) and (52)into Eq. (39), and using the following relationship 
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The governing equation could be processed to 
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Using the relationship in Eq. (52) as Turhan[30] did, one has 
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By using the Gauss-Chebyshev formula[34], ( )1i m
x  could be calculated by 
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The integral kernel ( )1 2
,

m m
k x t  could be handled numerically as oscillatory integral, and collocation points 1mx  

and 2mt  are zeros of Chebyshev polynomials of the first and second kinds 
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Thus, the Eq. (55) could be rewritten as 
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Coefficients k  are determined by expanding the Eq. (61) as the following system of linear algebraic equations 
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5 RESULTS DISCUSSION 

The flow chart of numerical solution is manipulated in MATHEMATICA software, and the initial number of n  is set 

to 10 with j n= . In the computational process, the tedious part is about the numerical calculation of kernel ( )1 2m m
k x t,  

due to the integrand involving sine-type function.  

Table 1 Numerical result of non-dimensional contact pressure ( )s  with 0 3= . , 0 = 5.  and =0 1 . . 

/x a  Untruncated (UT) Truncated (T) Erdogan 

-0.9 0.222031154907394 0.222031154907394 0.222031154907402 
-0.6 0.486736741503531 0.486736741503531 0.486736741503523 
-0.3 0.643346471150379 0.643346471150379 0.643346471150392 
0.3 0.643346471150379 0.643346471150379 0.643346471150392 
0.6 0.486736741503531 0.486736741503531 0.486736741503523 
0.9 0.222031154907394 0.222031154907394 0.222031154907402 



 
  

 

 
To speed the calculation, ExtrapolatingOscillatory is ulitized for the numerical integration, and the integral interval 

( )0 ,  is discretized into several parts. Results show that the integrand in the kernel converges to zero dramatically at the 

points near 8000, so we truncate the integration and minimize the interval to ( )0 10000, , the contact pressure ( )s  

obtained are recorded in Table 1 and shown in Fig.3. It is obvious that errors of ( )s  calculated through truncated and 

untruncated integration are negligible. 

 

Fig. 3 Distribution of non-dimensional contact pressure ( )s  for truncated and untruncated integral interval. 

Moreover, to ensure the precision and availability of the numerical solution used in this paper, the method from Erdogan 

and Gupta[11] is programmed for comparison. From Table 1 and Fig.4, it is apparent that results of non-dimensional contact 

pressure obtained from the two methods match well.  

 

Fig. 4 Comparison for ( )s  obtained from the present solution and method of Erdogan when 0 3= . , 0 = 5.  and =0 1 . . 



 
  

 

 

Table 2 Comparison for numerical results of non-dimensional contact pressure ( )s  when 10n=  and =20n , with 0 3= . , 

=0 5 .  and =0 1 . . 

/x a  10=n  20=n  

-0.9 0.222031154907394 0.22203614187814 
-0.6 0.486736741503531 0.486741347850588 
-0.3 0.643346471150379 0.643339927493522 
0.3 0.643346471150379 0.643339927493522 
0.6 0.486736741503531 0.486741347850588 
0.9 0.222031154907394 0.22203614187814 

As shown in Table 2, the term n  is increased from 10 to 20, it is found that the influence for the result is ignorable, 

and thus the numerical solution method presented in this paper exhibits good robustness.  

Fig.5 shows the variation of ( )s  with the dimensionless layer thickness  . For thin layer ( =0.5 ), contact 

pressure mainly concentrates on the head of the indenter as a bullet, and distribution of the pressure is more uniform as the 

  increases.  It indicates that, when contact radius remains constant under the same indenter, a thinner layer leads to a 

sharper distribution of contact pressure. This phenomenon may be attributed to the increased constraint imposed by the 

rigid substrate, from which the resistance in the bonded layer would be more pronounced as its thickness decreases, and 

therefore more concentrated contact pressure is required at the tip of indenter to displace the layer materials. Meanwhile, 

the ( )s  approximates the Hertz contact pressure when   approaches to 5, and the layer indented could be considered 

as a half-space. Results demonstrate the reliability of the numerical solution presented in this paper again.  

 

Fig. 5 The variation of non-dimensional contact pressure ( )s  with layer thickness   when 0 3= .  and =0 1 . . 

Fig.6 shows the variation of ( )s  with the Poisson’s ratio  . As Poisson’s ratio increases, the shape of pressure 

distribution sharps as a bullet. The results also show that ( )s  can be efficiently obtained when Poisson’s ratio 

approaches to 0.5, it means that the present method is available for incompressible materials problems. As illustrated in 

Fig.3 and Fig.4, an increase in Poisson’s ratio could also enhance the resistance originated from the layer-substrate 

structure.  

 



 
  

 

 

 

Fig. 6 The variation of non-dimensional contact pressure ( )s  with the Poisson’s ratio   when 0 = 5.  and =0 1 . . 

 

Fig. 7 The variation of non-dimensional contact stress ( )0
x
r ,  with the Poisson’s ratio   when 0 = 5.  and =0 1 . . 

The variation of dimensionless contact stress 
x

  with Poisson’s ratio at the layer surface is delineated at Fig. 7. It is 

obvious that the tensile peak is located at the contact edge, and the maximum value would decrease as the Poisson’s ratio 

increases. The compressive stresses beyond the contact region may indicate that the materials would pile up during the 

indenting process. 

6 CONCLUSIONS 

An indentation contact problem of a rigid cylinder stamp and a bonded elastic thin layer is investigated. Singular 

integral equation of the first kind for the contact problem is obtained by solving the Navier equations in Fourier domain. 

A concise numerical solution scheme based on Chebyshev polynomials is presented, and truncation algorithm for the 

calculation of the kernel is also proposed. Results show that the numerical method in this paper is reliable and precise. 



 
  

 

 
From the analysis, the contact pressure varies smoothly to a Hertz type as the layer thickness increases. It should be 

noted that meanwhile, the method is available for both compressible and incompressible material. Increasing Poisson’s 

ratio appears to have the same effect on contact pressure distribution as decreasing the layer thickness. 
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