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Abstract 
This work addresses the challenge of detecting early-stage scour damage, a hidden, leading cause of roadway 
bridge failures, using indirect monitoring data. The main contribution is the systematic investigation of the 
Convolutional Neural Network (CNN) capability to detect low-intensity damage, representing the initial stages 
of foundation scour, under a comprehensive set of Environmental and Operational Variabilities (EOVs). The 
dataset is generated from a numerical finite element code (VBI-2D) simulating the vehicle-structure dynamic 
interaction. Damage is modeled as a reduction in foundation support stiffness at the midspan. The EOVs 
incorporated include variations in vehicle properties, speed fluctuations, and stochastic road surface 
irregularities (ISO Class 'A'). Additionally, the study evaluates the damage-classification performance for 
different sensor locations along the vehicle and quantifies the uncertainties arising from both data variability 
and the stochastic nature of the learning algorithm. The optimal CNN architecture accuracy demonstrates the 
feasibility of using supervised CNNs with indirect monitoring data for early scour detection in highway bridges. 
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1 INTRODUCTION 

Among the various deterioration mechanisms threatening structures such as bridges and overpasses, scour, the 
erosion of soil around bridge foundations due to water flow, stands as one of the leading causes of bridge failures 
worldwide. According to Wang et al. (2017), scour is responsible for more than 60% of bridge collapses in the United 
States, with similar trends observed globally. This erosion process significantly undermines structural stability by reducing 
foundation support capacity, potentially leading to catastrophic failures with severe economic losses and humanitarian 
tragedies, as highlighted by Balageas (2010). The critical nature of scour damage lies in its hidden progression beneath 
water level, making it particularly challenging to detect through conventional visual inspection methods. Deng et al. 
(2016) emphasize that traditional inspection approaches often fail to identify scour-related damage in early stages, when 
preventive interventions would be most effective and economical. 

Drive-by monitoring, also referred to as indirect Structural Health Monitoring (SHM), has emerged as a promising 
alternative to conventional direct monitoring techniques for bridge condition assessment. This methodology, pioneered 
by Yang et al. (2004) in their seminal work on extracting bridge frequencies from the dynamic response of a passing 
vehicle, leverages the principle that vehicles traversing a bridge act as moving sensors, capturing information about the 
structure's condition through their own dynamic responses. The vehicle-bridge interaction (VBI) generates acceleration 
signals that contain information sensitive to changes in structural properties, including stiffness reduction caused by 
damage. Unlike direct monitoring, which requires sensors to be permanently installed on the bridge structure, drive-by 
methods utilize sensors mounted on vehicles, offering significant advantages in terms of spatial coverage, 
implementation cost, and operational flexibility. This approach enables continuous monitoring of multiple bridges along 
a roadway without traffic interruption, addressing logistical challenges and high costs associated with instrumenting each 
structure individually, as highlighted by Spencer Jr. et al. (2017), Malekjafarian et al. (2015) and Carnevale et al. (2019). 

However, the practical implementation of drive-by monitoring faces substantial challenges due to operational and 
environmental variabilities (EOVs) inherent to the vehicle-bridge system. These variabilities, according to Locke et al. 
(2020) include fluctuations in vehicle properties (mass, suspension characteristics, tire pressure), operational conditions 
(speed, load distribution), environmental factors (temperature, humidity), and road surface irregularities. As 
demonstrated by Corbally and Malekjafarian (2022), temperature variations alone can significantly affect the dynamic 
behavior of materials and consequently mask or amplify damage indicators, potentially leading to false positives or 
missed detections. Additionally, the stochastic nature of road surface roughness introduces noise that can obscure 
damage-related features in the acquired signals. Fallahian et al. (2018) further emphasize that without proper 
consideration of these EOVs, damage detection algorithms may misclassify normal operational variations as structural 
damage, severely compromising the reliability of monitoring systems. This sensitivity to multiple confounding factors 
represents one of the primary obstacles to transitioning drive-by methodologies from controlled experimental settings 
to real-world operational environments, an issue pointed out by Fernandes et al. (2025). 

Recent advancements in machine learning and deep neural networks have opened new pathways for processing 
drive-by data and addressing the challenges posed by operational variabilities. Using unsupervised learning 
methodologies, several studies have focused on detecting reductions in flexural stiffness through advanced signal-
processing techniques. For instance, Cantero et al. (2024) developed a comprehensive numerical benchmark comparing 
four data-driven methods for bridge damage detection, demonstrating the potential of machine learning approaches to 
manage the complexity of vehicle-bridge interaction signals. Demirlioglu and Erduran (2024) investigated the use of 
continuous wavelet transforms for drive-by damage detection. With respect to scour damage, Zhang et al. (2022) 
examined scour detection in highway bridges using a wavelet-based approach, with the feasibility of their method 
validated through both numerical simulations and laboratory-scale experiments. 

On the other hand, supervised learning approaches using Convolutional Neural Networks (CNNs) have 
demonstrated remarkable capabilities in extracting damage-sensitive features from complex signals to classify the 
damage severity. Corbally and Malekjafarian (2024a) developed a data-driven algorithm for drive-by condition 
monitoring, to classify damage presence, while their subsequent work (Corbally and Malekjafarian, 2024b) extended this 
framework to identify damage type (girder crack and support condition damage), location, and severity using deep 
learning architectures. Studies using CNNs and drive-by measurements to classify scour damage may be found for railway 
bridges. Fernandes et al. (2025) employed a CNN-based framework to detect scour and other simultaneous damage 
mechanisms by processing vehicle acceleration data through a Bayesian-optimized network architecture, demonstrating 
strong robustness to EOVs and achieving high classification accuracy across different sensor locations. In a 
complementary study, Fernandes et al. (2026) showed that incorporating vehicle speed responses as additional CNN 
inputs further improves the model’s accuracy in classifying scour-related damage. 
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Despite these significant advances, critical gaps remain in the current state of research, especially in highway 
bridges. Most existing studies focus on damage scenarios that consider crack girder or support condition damages. The 
literature lacks the investigation of early scour damage detection using indirect monitoring in highway bridges, especially 
in the presence of EOVs, and detecting low-intensity damage (less than 10% stiffness reduction). Hence, this work 
addresses these gaps by investigating the effectiveness of supervised Convolutional Neural Networks for identifying early 
scour-induced damage using indirect monitoring data. The methodology is validated through comprehensive numerical 
simulations that incorporate realistic operational variabilities including vehicle property variations, speed fluctuations, 
and road surface irregularities. Damage is modeled as foundation stiffness reduction at different severity levels (5% and 
10%), and the CNN's capability to detect these damage states is evaluated through rigorous classification performance 
metrics, providing insights into the feasibility of early damage detection under challenging operational conditions. In 
addition to addressing early scour detection, this study advances the field by systematically exploring different sensor 
locations along the vehicle to assess their influence on classification performance. Furthermore, it quantifies the 
uncertainties associated with damage classification arising from data variability induced by EOVs and from the intrinsic 
stochasticity of the CNN training process. Together, these analyses provide a deeper understanding of the robustness 
and practical feasibility of indirect scour detection under challenging operating conditions. 

2 NUMERICAL MODELING AND DATA ACQUISITION 

This section presents the numerical framework adopted in this study, which integrates a detailed Vehicle-Bridge 
Interaction model with realistic representations of scour damage and key Environmental and Operational Variabilities. The 
simulations capture the dynamic interaction between a heavy vehicle and the bridge structure, incorporate foundation 
stiffness degradation to represent different scour levels, and include stochastic factors such as road roughness and vehicle 
speed fluctuations. In addition, different degrees-of-freedom along the vehicle were selected to capture its vertical 
acceleration response, ensuring a richer and more informative representation of the drive-by measurements. This 
integrated approach ensures that the synthetic dataset reflects the essential complexities of real-world drive-by monitoring, 
providing a robust and representative basis for evaluating the proposed damage-classification methodology. 

2.1 VEHICLE-BRIDGE INTERACTION MODEL 

The Vehicle-Bridge Interaction (VBI-2D) model is a numerical simulation tool for analyzing the dynamic response of 
vehicles traversing a bridge, developed by Cantero (2024). This MATLAB-based software enables the simulation of traffic 
scenarios, including the effects of road profile irregularities and the interaction between vehicles and bridge structures, 
employing the Finite Element Method (FEM) to represent structural behavior. 

The vehicle model adopted represents a truck-trailer combination with a total average mass of 35×103 kg. The 
system comprises 14 degrees of freedom (DOFs): Body 1 (Tractor), with 3 DOFs (vertical displacement, pitch rotation, 
and center of mass displacement); Body 2 (Trailer): 3 DOFs (vertical displacement, pitch rotation, and center of mass 
displacement); Axle Groups: 8 DOFs (4 axle groups × 2 DOFs each: vertical displacement and unsprung mass 
displacement). Figure 1 provides an overview of the vehicle-bridge interaction model, from which acceleration responses 
are collected at vehicle DOFs 1, 5, and 6, corresponding to vertical acceleration measurements. 

 
Figure 1 Schematic representation of the vehicle-bridge interaction model and the considered Environmental and Operational Variabilities. 
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Vertical displacements of sprung and unsprung masses, pitch rotations of tractor and trailer bodies, suspension 
dynamics (compression and extension) and tire deformations at contact points where considered as the vehicle motions. 
The axle masses, ranging from 700 to 2,250 kg, are incorporated into the model as lumped masses connected to the 
vehicle bodies through spring-damper systems representing the suspension. Each axle group is modeled as a 
concentrated mass element with two DOFs: the vertical displacement of the axle itself and the vertical displacement of 
the connection point to the vehicle body. This lumped mass approach simplifies the computational model while 
maintaining accuracy in capturing the dynamic interaction effects, as validated by Yang et al. (2004). 

Multiple axle groups with masses distributed across tractor and trailer units feature the vehicle model. The system 
exhibits tire stiffness values between 1.6×106 to 3.9×106 N/m and tire viscous damping of approximately 1×104 N·s/m, 
with suspension stiffness ranging from 3.6×105 to 2.5×106 N/m and damping coefficients from 900 to 3,300 N·s/m. 

The bridge is modeled as an Euler-Bernoulli beam using finite element discretization. Each finite element consists 
of two nodes, with each node having two degrees of freedom: vertical displacement and rotation. The adoption of Euler-
Bernoulli beam theory is justified for this study given the span length of 25 meters and the slenderness ratio of the bridge 
cross-section, similar to the employed method by Sarwar and Cantero (2023). For the geometric and material properties 
considered, the contribution of shear deformations to the total deflection is less than 2%, well within acceptable limits 
for engineering applications. The Euler-Bernoulli assumption (plane sections remain plane and perpendicular to the 
neutral axis) is valid when the span-to-depth ratio exceeds 10, which is satisfied in this configuration. 

The contact between the vehicle wheels and the bridge surface is modeled as an interaction force applied at the 
contact point, rather than as a displacement compatibility condition. At each time step, the contact force is calculated 
based on the relative displacement and velocity between the tire and the bridge surface. Dynamic interaction models 
are employed to compute the vehicle-bridge interaction (VBI) forces, where the coupled system is governed by a set of 
equations of motion: 

𝑀𝑀𝑀𝑀 𝑞̈𝑞 = 𝐶𝐶𝐶𝐶 𝑞̇𝑞 + 𝐾𝐾𝐾𝐾 𝑞𝑞 = 𝐹𝐹s  (1) 

in which 𝑀𝑀𝑀𝑀, 𝐶𝐶𝐶𝐶, and 𝐾𝐾𝐾𝐾 denote the time-dependent mass, damping, and stiffness matrices of the vehicle-pavement-
bridge system. The vector 𝑞𝑞 contains the generalized displacements of the vehicle and bridge subsystems, while 𝐹𝐹s 
represents the external and interaction forces acting on the coupled system. 

The bridge degrees of freedom are treated through modal superposition to reduce computational cost while 
maintaining accuracy. For the 25-meter simply supported bridge, the first n=10 modes are considered in the analysis, 
capturing all significant dynamic effects within the frequency range of interest (0-50 Hz). This modal reduction technique 
significantly improves computational efficiency while maintaining numerical accuracy, as the contribution of higher 
modes to the total response becomes negligible beyond the 10th mode. 

2.2 SCOUR DAMAGE MODELING 

Scour refers to the erosion of soil around bridge foundations caused by water flow, which can significantly compromise 
structural stability. According to Wang et al. (2017), scour-related damage is particularly challenging to detect because it 
occurs below the waterline, making traditional visual inspection methods ineffective. In this study, scour is simulated by 
reducing the stiffness of the foundation support element at the bridge midspan, representing the loss of soil-structure 
interaction due to erosion around the footing. The healthy-condition stiffness is set to 𝐾𝐾𝐾𝐾 = 3.44 × 10ˆ8 𝑃𝑃𝑃𝑃, a value 
consistent with the vertical stiffness of shallow pad foundations modeled in the literature—for example, Fitzgerald et al. 
(2019) report a comparable foundation stiffness for medium-dense sand supporting a similar shallow footing configuration. 
In this sense, the damage can be simulated by reducing the vertical stiffness 𝐾𝐾𝐾𝐾 by: 

𝐾𝐾𝐾𝐾𝐾𝐾 = 𝛽𝛽𝛽𝛽𝛽𝛽  (2) 

where 𝛽𝛽 is a reduction factor 0 ≤ 𝛽𝛽 ≤ 1 representing the severity of the scour. A value of 𝛽𝛽 = 0 implies no scour. In this 
study, two cases were evaluated to understand the impact of varying levels of structural integrity. Minor damage is 
represented with 𝛽𝛽 = 0.95, corresponding to a 5% reduction in foundation support stiffness, while more significant 
damage is modeled with 𝛽𝛽 = 0.90 reflecting a 10% reduction in vertical stiffness. 

2.3 ENVIRONMENTAL AND OPERATIONAL VARIABILITIES 

To ensure that the numerical simulations approximate real-world operational conditions, several sources of 
variability are incorporated into the VBI-2D model. These environmental and operational variabilities (EOVs) are critical 
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for evaluating the robustness of the damage detection methodology under realistic conditions. The road profile 
significantly affects the vehicle-bridge interaction. This investigation adopts the ISO-8608 standard for generating 
random road profiles. Specifically, Class 'A' profiles are employed, representing well-maintained highway surfaces. The 
road profile is generated in the frequency domain using the Power Spectral Density (PSD) approach. The ISO-8608 
standard defines the PSD function S(n) as: 

𝑆𝑆(𝑛𝑛) = 𝑆𝑆(𝑛𝑛𝑛𝑛) � 𝑛𝑛
𝑛𝑛𝑛𝑛
�
−𝑤𝑤

  (3) 

where 𝑛𝑛 is the spatial frequency [cycles/m], 𝑛𝑛𝑛𝑛 = 0.1 cycles/m is the reference spatial frequency, 𝑆𝑆(𝑛𝑛𝑛𝑛) is the PSD value 
at the reference frequency and 𝑤𝑤 = 2 is the waviness exponent. The frequency range considered for road profile 
generation spans from 𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚 = 0.01 cycles/m to 𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚 = 10 cycles/m, corresponding to wavelengths from 100 m down 
to 0.1 m. This range captures all relevant irregularities that influence vehicle-bridge dynamic interaction, from long 
undulations to short-wavelength roughness. The road profile is generated at each simulation with a new random 
realization, as well as 5% of random measure noise, ensuring that each vehicle passage encounters a unique (but 
statistically equivalent) roughness pattern. This stochastic approach prevents the model from learning specific road 
features rather than damage-related patterns, as presented by Figure 2. 

 
Figure 2 Different vertical profiles generated for each algorithm iteration. 

To ensure realistic operational conditions, environmental and operational variabilities (EOVs) are incorporated 
through stochastic sampling of vehicle properties and road profiles. Vehicle parameters are sampled from normal 
gaussian distributions within the following ranges: total mass averaging 35×103 kg with axle masses from 700 to 2,250 
kg, tire stiffness from 1.6×106 to 3.9×106 N/m (damping fixed at 1×104 N·s/m), suspension stiffness from 3.6×105 to 
2.5×106 N/m (damping from 900 to 3,300 N·s/m), and velocity from 19 to 21 m/s. 

Temperature variability is not included in this study, as Fernandes et al. (2025) showed that, in scour damage 
classification problems using drive-by measurements and CNNs, temperature had no significant influence on 
classification accuracy when compared with other EOVs. 

2.4 DATA ACQUISITION 

The data acquisition strategy simulates a realistic drive-by monitoring scenario where accelerometers mounted on 
the vehicle capture dynamic responses during the bridge crossing event. The numerical simulations employ a sampling 
frequency of fs=1000 Hz, corresponding to a time step of Δt=0.001s. This sampling rate is sufficiently high to capture the 
dynamic content of the vehicle-bridge interaction, which is dominated by frequencies below 50 Hz. According to the 
Nyquist-Shannon sampling theorem, a sampling rate of 1000 Hz allows accurate representation of frequency components 
up to 500 Hz, providing a substantial safety margin above the frequency range of interest. 

The time integration of the coupled vehicle-bridge system is performed using the Newmark β method with 
parameters γ= 0.5 and β=0.25, corresponding to the average acceleration method. This integration scheme is 
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unconditionally stable and provides second-order accuracy in time. The time step size of 0.001 s ensures numerical 
stability, with the stability criterion satisfied as: 

∆𝑡𝑡 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
10

  (4) 

where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0.025 𝑠𝑠 is the period of the highest mode considered (10th mode at approximately 40 Hz). The vehicle's 
trajectory extends from an initial position 10 meters before the bridge entrance to a final position 10 meters beyond the 
bridge exit, totaling a monitored length of 45 meters for the 25-meter span bridge, and the acceleration data is recorded 
for three degrees of freedom (DOFs) of the vehicle: DOF 1, DOF 5 and DOF 6, as presented in Figure 1. While the 
simulations are performed in the time domain with fixed time steps, the vehicle position varies continuously due to its 
forward motion. To create consistent input dimensions for the CNN, the spatially-interpolated signals are resampled to 
a fixed length of 1,936 points, corresponding to the passage over the 25-meter bridge span at 0.0129 m spacing. This 
resampling is performed using linear interpolation to avoid introducing artificial frequency components. 

For each bridge condition (healthy, 5% damage, 10% damage), 600 vehicle passages are simulated for training the 
neural network, and an additional 100 passages are reserved for testing and validation. The acceleration data for each 
passage is stored as a vector of length 1,936, corresponding to the spatial discretization over the bridge span. The 
complete dataset is organized in a training set, containing 480 passages per condition (1,440 total), a validation set, 
containing 60 passages per condition (180 total) and a test set: 60 passages per condition (180 total). 

3 DATA PROCESSING 

The present investigation evaluates damage identification and classification for discrete outcomes in limited classes 
using 1D Convolutional Neural Network. A 1D Convolutional Neural Network is designed to extract meaningful temporal 
features from sequential data such as acceleration signals. At its core, the convolution operation applies learnable filters 
that slide across the input sequence to detect localized patterns. The discrete convolution used in 1D CNNs is expressed as: 

𝑦𝑦𝑖𝑖 = (𝑤𝑤 ∗ 𝑥𝑥)𝑖𝑖 +  𝑏𝑏 =  ∑ 𝑥𝑥𝑖𝑖+𝑗𝑗−1𝑘𝑘
𝑗𝑗=1 ∙ 𝑤𝑤𝑗𝑗 + 𝑏𝑏  (5) 

where 𝑥𝑥 is the input signal, 𝑤𝑤 is the convolutional filter of length 𝑘𝑘, 𝑏𝑏 is a bias term, and 𝑦𝑦𝑖𝑖denotes the feature-map 
output at position i. Each filter learns to detect specific characteristics of the signal, such as peaks, trends, or frequency-
related signatures. Nonlinear activation functions, ReLU (Rectified Linear Unit), are then applied to introduce nonlinearity 
into the model (Wang et al. 2020). 

To stabilize and accelerate training, Batch Normalization is applied after convolutional layers. It normalizes 
intermediate activations, reducing internal covariate shift and enabling the use of higher learning rates, thus improving 
convergence in deep models. Pooling layers, particularly max-pooling, follow the convolutional blocks to down sample 
the feature maps. Max-pooling retains only the highest value within each pooling window, preserving the most salient 
features while reducing dimensionality and computational cost. These compacted representations are then passed to 
fully connected layers, which aggregate extracted features to perform the final classification. Training is performed by 
minimizing a loss function, typically cross-entropy, via stochastic gradient-based methods (Robbins and Monro 1951), 
with adaptive optimizers such as Adam being widely used due to their efficiency. To improve generalization and mitigate 
overfitting, dropout regularization is also applied, especially in dense layers (Srivastava et al. 2014). 

3.1 Training and validation dataset split 

Three distinct datasets are loaded, each corresponding to a specific experimental condition: healthy baseline state 
(labeled 𝑦𝑦𝑦𝑦), 5% damage state (labeled 𝑦𝑦1) and a 10% damage state (labeled 𝑦𝑦2) with one-hot-encoding. Each dataset is 
programmatically assigned its corresponding integer and categorical label with shape (2000x1). Subsequently, each signal 
is independently normalized with z-score transformation, so the dataset can be reshaped into the standard input shape 
for 1D CNN architectures (samples, timesteps, channels). 

Dataset partitioning starts with the separation of a holdout set, reserved to attest the trained models efficiency in predicting 
the class of unseen data. Then, the dataset undergoes stratified subsampling, separating a balanced dataset with 100 samples 
from each class scenario, from which train-test split occurs with a rate of 80% for training, 10% for testing and 10% for validation. 
All resulting datasets, holdout, train and test are serialized to serve as input for the CNN training and validation processes. 
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3.2 Search for minimum sample size 

Data availability may be a difficulty for real case scenarios, as pointed out by Fernandes and Lopez (2025) and 
Golpayegani and Moloney (2019). To systematically search for the minimum number of samples in a balanced dataset 
that reaches a satisfactory accuracy, this investigation used a process to generate a learning curve to evaluate the 
generalization capability of the classification model repeatedly building and training a generic CNN with different train 
set sizes (5, 10, 20, 40, 60, 80, 100, 150, 200) of each class five times to generate a confidence interval, as Figure 3 shows. 

The initial convolutional architecture used to find the minimum sample size is described in Table 1, and its training strategy 
was dividing the dataset 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 into training, validation, and testing subsets. Let (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), and (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) denote these 
subsets respectively. The division is done to ensure that the model is trained on one portion of the data (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), fine-tuned 
on another (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), and finally evaluated on unseen data (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) to assess its generalization capability. Figure 3 displays the 
mean accuracy of the search for minimum training sample size, each run trains the model from scratch multiple times (5 trials) 
on balanced subsets of increasing size (5-200 samples per class), evaluates each on a fixed test set, and plots mean test accuracy 
(±1 std) vs. total training samples to show how performance scales with data volume. 

 
Figure 3 Search for minimum training sample size. 

Table 1 CNN architecture for minimum training sample size search. 

Layer Output shape Parameters 

Input Layer (1, 2000,1) 0 

Conv1D (1, 2000, 32) 192 

Batch Normalization (1, 2000, 32) 128 

Activation (1, 2000, 32) 0 

MaxPooling1D (1, 2000,32) 0 

Conv1D (1) (1, 1000, 64) 10 304 

Batch Normalization (1) (1, 1000, 64) 256 

Activation (1) (1, 1000, 64) 0 

MaxPooling1D (1) (1, 500, 64) 0 

Dropout (1, 500, 128) 0 

Conv1D (2) (1, 500,64) 41 086 

BatchNormalization (2) (1, 500, 128) 512 

Activation (2) (1, 500, 128) 0 

Global Average Pooling (1, 128) 0 

Dense (1, 128) 16 512 

Dropout (1, 128) 0 

Dense (1) (1, 3) 387 
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Further on, to find the best combination of hyperparameters, a search is performed based on the implementation 
of a Bayesian optimization provided by the library Keras tuner Python, with the objective function to minimize validation 
accuracy for 50 trials. The result architecture is described in Table 2, and with this topology, the model is tested in the 
dataset to generate accuracy results presented in the following section. 

Table 2 Optimal CNN architecture after Bayesian hyperparameter tuning. 

Layer Output shape Parameters 

Input Layer (1, 2000,1) 0 

Conv1D (1, 2000, 48) 288 

Batch Normalization (1, 2000, 48) 192 

Activation (1, 2000, 48) 0 

MaxPooling1D (1, 1000, 48) 0 

Dropout (1, 1000, 48) 0 

Conv1D (1) (1, 1000, 16) 3 856 

BatchNormalization (1) (1, 1000, 16) 64 

Activation (1) (1, 1000, 16) 0 

MaxPooling (1) (1, 500, 16) 0 

Dropout (1) (1, 500, 16) 0 

Global Average Pooling (1, 16) 0 

Dense (1, 16) 8 704 

Dropout (2) (1, 16) 0 

Dense (1) (1, 3) 1 539 

4 RESULTS 

This section investigates the performance of the proposed Convolutional Neural Network (CNN) approach for 
scour damage classification in a highway bridge. The study utilizes data from three distinct sensor positions: the 
tractor box (DOF 1), tractor rear suspension (DOF 5), and trailer suspension (DOF 6), as illustrated in Figure 1. To 
account for inherent variability in both the data distribution and the CNN training process, each classification case 
was executed 20 times. 

These runs were performed using different data splits and randomized seeds. Consequently, the 
performance metrics are presented in boxplot format to visualize the range and distribution of the results, further 
details can be found in Fernandes et al. (2025). All model training is conducted on a macOs equipped with an M2 
Pro chip with 10 cores and 16 GB of RAM. Figure 4 presents the F1-Scores and Macro-Average Precision of 20 
independent runs for the three sensor positions (DOF-1, DOF-5 and DOF-6), and the three classes (Healthy, 5% 
and 10%). These results show that sensor placement materially affects class-wise F1 and macro-precision: DOF-
6 yields the highest macro F1 on average, followed by DOF-1, while DOF-5 lags and exhibits the largest run-to-
run dispersion. 

The Healthy class attains near-perfect F1 across all DOFs, whereas performance drops for the 5% and 10% classes - 
most noticeably at DOF-5 - reflecting residual confusion between adjacent severities, showcasing how vehicle sensor 
location (DOFs 1, 5, 6) influences supervised CNN performance under identical preprocessing, sampling, and training 
conditions across 20 independent runs per DOF (seeds 42-61). For each run, a balanced subsample of 100 signals per 
class is drawn after isolating a holdout set of 100/class; the subsample is then split 80/10/10 (train/test/val) with 
stratification. 

Figure 5 shows the best confusion matrix across the 20 runs for each DOF, highlighting dominant diagonals (true 
positives) and any systematic off-diagonal confusions. When misclassifications occur, they are most likely to arise 
between the 5% and 10% damage classes (y1 vs y2), consistent with their proximity in severity, whereas the healthy class 
(y0) typically remains better separated. Comparing the three panels (one per DOF) reveals whether specific DOFs 
concentrate residual errors in particular class pairs. 
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Figure 4 F1-scores and performance metrics results by vehicle DOF 
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Figure 5 - Average confusion matrixes across 20 runs for each DOF 

Figure 6 summarizes the confusion matrixes across the 20 runs for each DOF with boxplots presenting the standard 
deviation of the calculated accuracies. The distributions (median, IQR, whiskers) reflect the run-to-run variability driven 
by data resampling and training under fixed architecture and hyperparameters. Mean accuracy markers and mean ± std 
annotations allow a comparison of central tendency and dispersion among DOFs. This figure is the primary indicator of 
stability and potential DOF sensitivity under repeated trials. A one-way ANOVA confirmed that sensor placement 
significantly affects performance, with DOF 5 statistically worse than DOFs 1 and 6, and no significant difference between 
DOFs 1 and 6 for accuracy. 
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Figure 6 - Classification accuracy standard deviation by vehicle DOF 

5 FURTHER COMMENTS: PRACTICAL FEASIBILITY AND IMPLEMENTATION CHALLENGES 

Although simulation-based results demonstrate that damage-sensitive features can be reliably extracted from 
vehicle accelerations, translating this capability into practice involves nontrivial constraints related to data acquisition, 
environmental variability, and system robustness under real traffic conditions. In real-world applications, precise 
synchronization between vehicle location and sensor readings, as well as stable power and communication systems, is 
essential to avoid incomplete or misaligned datasets. Challenges such as intermittent connectivity, limited access to 
power in remote regions, and potential equipment vandalism further complicate long-term deployment and require 
robust strategies, including autonomous power supplies, redundant data storage, and secure sensor enclosures. 

Additional implementation barriers arise from the vehicle itself. Depending on the bridge span, stiffness, and 
dynamic characteristics, reliably capturing the subtle vibration signatures associated with early scour may require a 
sensor-equipped vehicle with sufficient mass to excite measurable changes in the structural response. Light vehicles may 
fail to generate adequate dynamic interaction, reducing the method’s sensitivity to incipient damage. Moreover, the 
approach depends on aggregating data from a large number of vehicle passages, making operational feasibility a decisive 
factor. In urban roads, this requirement can be met by equipping existing high-mass vehicles, such as public buses that 
repeatedly traverse the same route. In rural or hard-to-access regions, where installing fixed sensors is often impractical, 
drive-by monitoring could leverage heavy trucks involved in agricultural or mining logistics, which typically follow stable 
origin-destination patterns and provide both the necessary vehicle mass and the high passage frequency required for 
statistical learning. 

These considerations highlight that practical implementation of road-based drive-by monitoring must balance 
technological reliability with realistic traffic and operational conditions. External disturbances such as variable speed, 
heterogeneous traffic flows, and uneven road profiles introduce significant noise, necessitating adaptive processing, 
advanced filtering, and long-term data aggregation strategies. Nonetheless, periodic multi-passage data collection 
remains attractive because it enables the gradual accumulation of evidence regarding structural changes without the 
cost and complexity of permanent installations. When properly integrated into transportation networks, this strategy 
supports scalable monitoring programs capable of identifying early deterioration trends, such as progressive scour, while 
maintaining flexibility in inspection frequency and resource allocation across different bridge typologies and risk levels. 

6 CONCLUSION 

This paper explored the effectiveness of supervised Convolutional Neural Networks (CNNs) for early damage 
classification in highway bridges using indirect monitoring data. The methodology was validated through comprehensive 
numerical simulations of the Vehicle-Bridge Interaction (VBI) system, where damage was modeled as stiffness reduction 
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at the foundation support element located at the bridge midspan, representing scour-induced damage. To ensure the 
robustness and practical relevance of the approach, the simulations incorporated a comprehensive set of Environmental 
and Operational Variabilities (EOVs), including variations in vehicle properties, speed fluctuations, and random road 
surface irregularities (ISO Class 'A' profiles). Specifically, the study systematically investigated CNN's ability to detect low-
intensity damage scenarios of 5% and 10% stiffness reduction. The data processing involved normalization and stratified 
splitting to create robust training, validation, and holdout sets. A Bayesian optimization approach was used to determine 
the optimal CNN architecture. 

The trained CNN demonstrated promising performance in classifying bridge signals based on their healthiness levels. 
Utilizing the optimal hyperparameter configuration, the CNN achieved mean accuracies of ≈93.0% (DOF-6), ≈90.3% (DOF-
1), and ≈82.2% (DOF-5), with the broadest spread at DOF-5; 95% confidence intervals for accuracy are 88.9-97.1% (DOF-
6), 87.9-92.6% (DOF-1), and 77.8-86.5% (DOF-5), which consisted of samples unseen during the training and testing 
phases. The confusion matrix visualized the best classification performance across all three classes: healthy, 5% damage, 
and 10% damage. This result showcases the potential of CNNs to accurately categorize low-intensity structural 
impairment under the influence of significant operational noise and variability, paving the way for broader adoption of 
machine learning in infrastructure monitoring. 

Despite the promising numerical results, there are key limitations and areas for future research. The current work 
employs a 2D VBI model, and future studies should incorporate more realistic 3D models to capture complex spatial 
dynamics. More critically, while simulation-generated data has facilitated the initial development, the models must be 
validated and refined using data collected from laboratory experiments, and then, real-case scenarios and operational 
bridges. Hence, despite the promising results, this paper functions as a proof-of-concept, and gives a step toward the 
practical implementation of a drive-by scour damage detection system. 
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