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Prediction of Energy Absorption Capability in Fiber Reinforced
Self-Compacting Concrete Containing Nano-Silica Particles

using artificial neural network

Abstract

The main objective of the present work is to utilize feedforward
multi-layer perceptron (MLP) type of artificial neural networks
(ANN) to find the combined effect of nano-silica and different
fibers (steel, polypropylene, glass) on the toughness, flexural
strength and fracture energy of concrete is evaluated. For this
purpose, 40 mix plot including 4 series A and B and C and D,
which contain, respectively, 0, 2, 4 and 6% weight of cement,
nano-silica particles were used as a substitute for cement. Each
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of series includes three types of fibers (metal: 0.2, 0.3 and 0.5%
volume and polypropylene: 0.1, 0.15 and 0.2 % volume and glass
0.15 and 0.2 and 0.3% by volume) were tested.

The obtained results from the experimental data are used to
train the MLP type artificial neural network. The Results of this
study show that fibers conjugate presence and optimal percent of
nano-silica improved toughness, flexural strength and fracture
energy of concrete of Self-compacting concrete (SCC). Results of
this study show that fibers conjugate presence and optimal per-
cent of nano-silica improved toughness, toughness, fracture ener-
gy and flexural strength of SCC.

Keywords

Fiber, Self-compacting concrete, Nano-silica, mechanical proper-
ties, artificial neural network.

1 INTRODUCTION

Self-compacting concrete (SCC) was first developed to improve durability stability of concrete
structures in Japan in 1988 (Ozawa et al., 1996). According to the theory, SCC is a highly flowable

and coherent concrete that is able to consolidate under its own weight without any vibration. In
addition, it is able to maintain its uniformity after concrete filling and to fill the congested rein-
forced concrete structures (Ouchi et al., 1996; Nehdi et al., 2003; Khayat, 1999; Saffiuddin et al.,
2011). Although steel bars are centrally placed in concrete and compensate the weakness to high
extent, they are expensive and cannot be applicable in some areas such as surface of canals, airports
overlays, etc. During the last decades string fibers have been used in concrete to solve the problem
(Romualdi and Batson, 1963; Romualdi and Mandel, 1964). Rupture of concrete drastically depends
on crack formation due to loading or environmental impacts. Continuous loading causes the cracks
to propagate throughout the body of concrete (Soroushian, 1986). Using different reinforcing fibers
in concrete to make Fiber Reinforced Concrete (FRC) is an effective method in preventing crack
propagation and compensating shrinkage induced by low tensile strength [Seung et al., 2012|. Pres-
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ence Of fibers in concrete not only improve some mechanical properties such as resistance to crack
creation and growth, strength and resistance to impact, but will also increase the ductility and en-
ergy required for fracture of concrete (Shah et al., 1995). The most important properties of fiber
concrete are energy absorption, formability and resistance against strikes, Energy absorbing proper-
ties and sufferance of concrete can desirably reduce the risk of failure of concrete structures, espe-
cially in areas where concrete structures are under seismic and frequent loads.

Studies show that addition of different fibers does not fundamentally change the behavior of the
concrete prior to its maximum stress while it greatly improves the concrete post-cracking behavior.
This method positively influences other properties of the concrete including toughness, fracture en-
ergy and flexural strength. Energy absorption and strengthening of concrete can efficiently reduce
the rupture risk in concrete structures, especially under alternative and vibrating loads. Therefore,
when FRC is subjected to impact loading, cracks occurrence in matrix is much faster than the rup-
ture occurrence in fibers. When cracks occur in the matrix, one of the followings might happen to
the composite:

(A)Rupture might happen to the composite immediately after crack appearance in the matrix.
(B)Under lighter loads, the composite might still bear the load and continue deformation; this is the
case when steel fibers are used in low to medium volume. In this condition, after cracking, strength
is first provided when fibers are pulled out of the cracks and then continue when they are deformed.
(C)After crack occurrence in matrix, the composite might be able to bear tensile stress and more
deformation. This condition happens when fibers are used in medium to large amount. It should be
noticed that this happens only when pull-out strength of fibers is more than the existing load at the
moment of appearance of the first crack. This is because of sudden transfer of entire load to the
fibers at the occurrence. When the load is increased, being stuck to the contact area, fibers transfer
the extra stress to the matrix.

It is clear that FRC in (A), is not ductile and the highest level of ductility occurs in FRC in (C).

To achieve the highest level of ductility in FRC, fiber-matrix interface should be reinforced.
More reports from measurement of toughness are the indices without foundation energy dimension,
particularly laboratory applications of such indices with the introduction of toughness index ACI
(ACI 544, 1988) based on Henegar work (Henegar, 1978) was started. ACI 544 express toughness
index is ratio of energy required for deformation 1/9 mm fiber reinforced beam to energy required
for creating first crack. One of the problems of this approach is determining reliable value of the
location of the first crack, and also 1/9 is an arbitrary value. In fact, range of deformation must be
defined based on service level requirements. Of course, the ACI in new edition of itself has used
toughness index of it that is defined as ratio of fibrous concrete absorbed energy to conventional
concrete absorbed energy.

Japan s Concrete Institute JCI (JCI, 1984) define toughness index for a beam with a standard
size, area under curve (load- deformation) to range (L/150). standards from Belgian (IBN, 1992),
Germany (DBV, 1992), RILEM (RILEM, 1984) and Spain (AENOR, 1989) also suggest a similar
trend and test. Energy absorption capacity, defined as the amount of absorbed energy in per basal
area unit of sample in a certain deformation. Since in fibrous concrete obtaining first crack energy is
not clearly identified and in ASTM C 1018 clearly don’t evaluated. Therefore in order of more a
logical comparison, area under the curve (load - displacement) to the final deformation is considered
as the toughness of concrete.

One of the most important parameters in the study of concrete behavior, especially after reaching
the peak load, is Energy required for creating crack the concrete unit level that fracture energy
(GF) said (Gue et al., 1999). Direct method for determining fracture energy is the direct tensile
tests (Bazant and Panas, 1997). Although some researchers have used this approach to determine
the GF, it has many problems for concrete (Navalurkar et al., 1999; Elices et al., 2002). Other
strategies have been proposed to determine the fracture energy that needs easier testes. Among
them, we can mention two-parameter method of King (Jenq and Shah, 1985), Kazemi and Bezant
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size effect method (Bazant and Kazemi, 1990) and Hylrbrg s work method (RILEM, 1988). In the
recent method, that mainly in the paper is used to determine the fracture energy, from the force-
displacement curve of concrete beams in three-point bending test with displacement control to spec-
imens complete failure is used. It is important to note that the method with modifications is rec-
ommended by RILEM - TC50 (The European Guideline for self compacting concrete specification,
2005).

In practical terms, artificial neural networks are essentially computer programs that can auto-
matically find non-linear relationships and patterns in data without any pre-defined model form or
domain knowledge. In recent years, artificial neural networks have been used to predicting the con-
crete properties (Flood et al., 2001; Pannir et al., 2009; Perera et al., 2010; Yang et al., 2008; Guang
and Zong, 2000; Goh ATC, 1995; Sand and Saka, 2001; Jamal et al., 2007; Arslan et al., 2009;
Arslan et al., 2007) from a literature study it could be find that there is no investigation on the
combined effects of fibers and Nano silica on the Mechanical Properties of Self- Compacting Con-
crete using artificial neural network.

In this research, the combined effect of nano-silica particles and fibers type (steel, polypropylene
and glass) on toughness, fracture energy and flexural strength of SCC were evaluated.For this pur-
pose, forty mixtures in A, B, C and D series representing 0, 2, 4 and 6 percent of Nano-silica parti-
cles replacing cement content were cast. Each series involved three different fiber type and content,
0.2, 0.3 and 0.5% volume for steel fiber, 0.1, 0.15 and 0.2% of volume for polypropylene fiber and
finally 0.15, 0.2 and 0.3% of volume for glass fiber. The obtained results from the experimental data
are used to train the MLP type artificial neural network. To train the present MLP-ANN the nano
and fiber percent as the inputs and toughness, fracture energy and flexural strength as the outputs
of the network are used. The trained network is used to predict the effect of various parameters on
the desired output.

2 Material properties and experimental setup
2.1 Material

To carry out the experimental investigation, an amorphous nano-silica (nano-Si02,Meyco MP320,
BASF) with a solid content of more than 99% is used. Physical properties of these materials are
shown in table (1). The nano-silica content for different cases was 2, 4, and 6 wt%. In this study, a
super plasticizer (SP) of carboxylic ether (Glenium-110P, BASF) with specific gravity 1.1 gr/cm3
(at 20°C) and three types of reinforcing fibers namely polypropylene (PP fibers, peypol-
sazan),stainless steel (DUOLOC 36/0.8, BASF) and glass(Chopped Strand, bloorintar) (See Fig.(1)
and Table (2) ) were used.

Table (1): Properties of nano-Silica.

Diameter Surface— volume Density Purity
(nm) ratio (m2/g) (g/cm3) (%)
155 160t 20 <0.15 >99.9

Table (2):Properties of the reinforcing fibers.

Type Length diameter Tensile strength Aspect Elastic modulus Density
(mm) (mm) (MPa) ratio (GPa) (g/cm®)
1/d
Steel 36 0.7 2100 50 160 7.8
polypropylene 12 0.1 450 120 5 0.9
Glass 12 0.1 1400 600 87 2.65
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Fig. (1): Different types of fibers used in this investigation: (a) steel, (b) polypropylene, (c) Glass.

The size of gravel was less than 12.5 mm and in accordance with ASTM standard of grading curve.
The sand was selected from sieve No. 4.75mm equivalent to 76-percent sand. Cement was of Port-
land type II and specific gravity of limestone powder was 2.6 gr/cm3.

In the present work seventy mixtures in A, B, C and D categories representing 0, 2, 4 and 6
percent of nano-silica particles replacing cement content were cast. Each series involves three differ-
ent fiber type and content; 0.2, 0.3 and 0.5% volume for steel fiber, 0.1, 0.15 and 0.2% of volume for
PP fiber and finally 0.15, 0.2 and 0.3% of volume for glass fiber. In all 40 samples, all variables were
the same except for the fiber type and contents of fibers and nano-silica. The sample with
Water/cement (nano-silica + cement) ratio of 0.39 and the sample with no fibers and nano-silica
were considered as the control sample (Vf in Table (3) is the volume percent of fiber, i.e. fiber to
concrete volume ratio).

2.2 Curing and maintaining the samples

Once the mixing process was completed, the samples were placed into molds and kept under labora-
tory condition for 24 hours. They were then removed from the molds and kept in 22-25°c water
until the suitable age (28 days) for each experiment. Each mixing design included three
100x 100x500mm beam molds and three 100x 100x840 mm beam molds. There were a total of 240
samples for 40 mix design protocols.

2.3 experimental setup

Flexural strength test was performed on a hydraulic Universal Testing Machine (UTM) equipped
with displacement speed Control mechanism (displacement rate of 0.5 mm/min) according to the
standard ASTM C1018-94b. The samples were 100x100x500 mm prismatic mixes. The distance
between the two supports was 40 cm. The results are presented in Table (3).

3 Artificial neural networks (ANN):
3.1 Modeling using MLP-type neural networks

Unknown function approximation has attracted a great deal of research from different areas such as
statistic, data mining, and engineering sciences. Among various types of function approximation
tools, artificial neural networks provide a framework which can learn or approximate any function
from given data samples through a training process. One of the most important features of a neural
network is its flexibility and ability to learn complicated relationships based on the data. Various
neural network architectures exist, of which the most popular is the feedforward multi-layer percep-
tron (MLP). An MLP type of neural network consists of one input layer; one or more hidden lay-
er(s) and one output layer with a large number of inter connected neurons. Fig. (2) shows the basic
structure of a typical MLP network.
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Table (3):Physical properties of the hardened concrete (28days)

gi?il(l;z Fibeér ilféigti Toughness GF{ gliléz Fibeor ilf;?gltﬁ Toughness C/}F K
(%) VF (%) (Mpa) (Nmm)  (J/m2) (%) VF (%) (Mpa) (Nmm)  (J/m2)
- 5.16 1190 143.5 - 7.2 - -
0.2 6.02 20651 2653 0.2 8.4 22505 2871.1
St 0.3 6.58 22695 2893.5 St 0.3 8.6 26785 3374.7
0.5 7.08 31169 3890.4 0.5 9.1 35105 4353.5
0 0.1 5.82 3843 529.7 4 0.1 7.5 3980 545.8
PP 0.15 6.24 5012 667.3 PP 0.15 7.8 5309 702.2
0.2 6.6 5433 716.8 0.2 7.9 5911 773
0.15 5.52 2314 285.2 0.15 8.5 2470 303.5
Glass 0.2 8.1 3001 366 Glass 0.2 9 3102 377.8
0.3 7.8 2570 315.3 0.3 8.7 2515 308.8
- 5.52 - - - 7.2 - -
0.2 7.2 23748 3017.4 0.2 8.3 21078 2703.3
St 0.3 7.53 27553 3465 St 0.3 8.6 21970 2808.2
0.5 7.4 36468 4513.8 0.5 9 30556 3818.5
) 0.1 6.1 4343 588.6 6 0.1 7.2 3850 530.6
PP 0.15 6.4 5357 707.8 PP 0.15 7.8 5112 679
0.2 7 6007 784.3 0.2 7.8 5430 716.5
0.15 6.7 2503 307.4 0.15 8.2 2270 280
Glass 0.2 8.3 3177 386.7 Glass 0.2 8.8 2876 351.3
0.3 8.1 2693 329.8 0.3 8.6 2482 304.9

An example of a MLP type of neural network with one input node, a single hidden layer with
two neuron and one output neuron is shown in Fig.(3). An additional input called bias with con-
stant value of 1 is added to the previous input node which works as a shift operator. Each input
node is related to each neuron in hidden layer by a connecting weight. The sum of the products of
the weights and the inputs is calculated by each neuron in hidden layer and then treated by an
activation function. The obtained result is then multiplied by the associated weight C, and again
the previous procedure will be repeated in the output neuron. In the present study hyperbolic tan-
gent and linear functions are used as the activation functions in the hidden and output layers re-
spectively.

weights

Network
output

| J | J \ J\ J
| 1 I I

Input layer First Second output layer
hidden layer hidden laver

Fig.(2): The structure of an MLP-type network.
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hyperbolic tangent Linear activation
activation functions functions

Fig. (3): Architecture of a network with one hidden layer containing two neurons and one neuron in the output
layer.
The final output of the current network is calculated as
Network output (NO) =F, (x, )+ F, (x ) =F(x,) (1)

where,
Fl(xl):CB tanh(ClX1+C2) (2)

Once the number of layers and the number of neurons in each layer, have been selected, the net-
work's weights must be adjusted to minimize the prediction error made by the network. This is the
general role of the training algorithms. In this investigation Back-propagation (BP) method is ap-
plied to train the ANN which is the most widely used learning process in neural networks today.

3.2 Back-Propagation algorithm

Back-propagation was firstly proposed by Werbos (Werbos, 1974) which is based on searching an
error surface (error as a function of ANN weights) using the gradient descent algorithm for points
with minimum error.

Consider a network with one hidden layer and one output neuron as shown in Fig (4).

Network
output

I I 1
Input layer hidden laver output layer
Fig. (4): A feed-forward multi-layer perceptron type of neural network with one hidden layer.

When a set of input data (input vector) are propagated through the network, for the current set
of weights there is an output ESt. The training of perceptron is a supervised learning algorithm
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where weights are adjusted to minimize the absolute error between the estimated output ESt of
network and the desired output Des whenever the estimated output does not match the desired out-
put. If the network error ( NE ) is defined as:

Network Error =Est — Des = NE (3)

The training algorithm should adjust the weights to minimize NE®. For this purpose an artificial
neuron with its basic elements is considered as shown in Fig .(5). The neuron consists of three basic
components; weights, a summing junction and an activation function.

NO,

summing junction activation function

Wy
\

NO,

N
]\]0M / neuron N

Fig. (5): Basic elements of an artificial neuron

The outputs of N neurons NO,,...,NO, lead in neuron N as the inputs. If neuron N is in the
hidden layer then this is the input vector of the network. These outputs are multiplied by the asso-
ciated weights W,,,...,.W . The summing junction adds together all these products to provide the
input I for activation function of neuron N . Then | passes through the activation function
AF () and gives the final output of neuron N , which is NO, .

To commence the calculations, consider neuron M and weight W,,, which connects the two neu-
rons. The equation for weight update is as follows

o(NE?)
=W LR.

MN (old) — oW
MN

W (4)

MN (adjusted)

where LR is the learning rate parameter and 6(NE)2 / OoW,,, is error gradient with reference to the
weight Wy, . The chain rule gives
o(NE?) :a(NEZ) ol 5
MWy oly Wy

since the rest of the inputs to neuron N are independent of the weight W,,, we have

o, 2N anow,, OZNOM ©
W, W, W, W, M
Egs. (4), (5) and (6) give
o(NE?)
WMN(adjusted) :WMN(old) - LR-T NOy, <7)

For the case N is an output neuron we have:

Latin American Journal of Solids and Structures 11 (2014) 966-979
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0(NE?)=0(Est - Des)’ —

d(NE? (®)
O(NE?) 2(Est - Des)- 22 _o(NE)AEUn) o gy AR (1)
EN EN EN
Substituting Eq. (8) into Eq. (7) gives
Wi (adjustedy =V oy — LR-NOy, -2( NE)X AF’( Iy ) 9)

For hyperbolic tangent and linear activation functions AF'(l,) and the final form of weight up-

date rule can be written as follows

AF(1,)=1-[ AF(1,)] —>

For hyperbolic tangent: ) (10)
Wi adiustety =Waan oiay — LR-NOy, '2( NE)X (1_[AF ( Iy )] )
AF ’( Iy ) =1
for linear functions: (11)
WMN(adjusted) :WMN(old) - LR'NOM -Z(NE)
When N is a hidden layer neuron
o(NE)Y O(NE?) a1, oNO, 12)
ol al,, ONO, al
where the subscript on represents the output neuron. In Eq. (12) we have
OAF (1
oNOy _ Uy) _ AF'(1y),
ol al,
i=N (13)
alon B aZ NOi\Ni on B aNON WN on aZ NOi\Ni on _W
oNO,  oNO,  NO, oNO, M
substituting Eq. (13) into Eq. (12) gives
o)A, .
= X
ol a, ()
In Eq. (14), G(NEZ) / ol is now written as a function of G(NEZ) / ol,, which was calculated in Eq.
(8).
Hence the weight update rule for a hidden layer neuron takes the following form
o(NE?)
WMN(adjusted) :WMN(old) —LR.NG,, TWN on X AF ( Iy ) (15)

on

3.3 Performance of neural network

The most common parameters for evaluation of a neural network’s performance are minimum total
squared errors (or RMS error) and minimum total absolute error (DTI, 1994) (or MAE error). MAE
and RMS errors are defined as

Zn:( Des, — Est, )2 (16)
RMS error; {42

n
Latin American Journal of Solids and Structures 11 (2014) 966-979
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Zn:| Des; — Est,|

< 17
MAE error; = (17)

n
where N is the number of training data. The number of hidden layers and the neurons in each of
them should be determined in a way to minimum the above errors.

4  Results and discussion

4.1 Modeling of output using MLP-type neural network

The input—output data pairs used in the present work consist of two input variables, namely the
nano-silica and fiber percents and three output toughness, fracture energy and flexural strength
obtained from experimental test. Before training procedure the data set was normalized to their
mean value and standard deviation 1. A training set of 14 out of 16 input—output data pairs is used
to train the MLP-type neural network with only one hidden layer based on BP algorithm for each
fiber. The remaining 2 data pairs are used to test the network performance. Since there are two
input variables the network has two neurons in the input layer and one neuron in the output layer.
Hence there is no specific method to determine the number of neurons in the hidden layer, Trial
and error was used. Fig.(6) depicts the effect of different neural network architecture (different
number of neurons in the hidden layer) on the RMS error of the network obtained from the normal-
ized data. As can be seen a network with 12 neurons in the hidden layer has an acceptable perfor-

mance.

1 Neuron
2 Neuron
3 Neuron
4 Neuron
5 Neuron
11 Neuron
13 Neuron
15 Neuron

o ~N 0 ©

bbb Ll | N " L

Network Error

bt bbb it bbb

N W R,

1

N L N J
1000 2000 3000 4000 5000
Iteration

Fig.(6): effects of the number of hidden neurons on the network performance for PP fiber and nano-silica particles.

The excellent behavior of the MLP-type neural network for both training and testing data for
the present case is also shown in Fig. (7).The figure reveals that the trained network is able to
model and predict the outputs successfully.

o}

140
- - Experimenal culputs
g 120 - Fstimated outputs
=
= Train Test, |
= 100
g EL @ 2}
= = !
5 SUEB\B @ fa @E@ 5 ‘E'd'r Teg,
™= e @EI @ﬁ
1 1 1 1
80 5 10 15 20 25
Number

Fig. (7): Performance evaluation of the neural network in prediction of Gy for PP and nano-silica particles
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4.2 Flexural strength

Figure (8) shows a direct relationship between the flexural strength and content of reinforcing fibers
(steel, polypropylene and glass). Maximum increase in flexural strength equals 7.08, 6.6 and 8.1
MPa when there is an increase of 0.5 v% in steel, 0.2 v% in polypropylene and 0.2 v% in glass fi-
bers, respectively. The percentages of these increases, compared with the reference sample (A1) are
37, 28 and 56 percent, respectively. As it can be seen from Figure (8), in the samples without fibers,
increase of nanosilica content up to 5 percent increased the flexural strength continuously in a line-
ar manner to a peak at 5 wt% of nanosilica (optimum percentage). Any further increase in nanosili-
ca content caused no increase in flexural strength. On the other hand tensile strength behavior of
the samples shows that higher amount of nanosilica contents increase the reinforcing fibers-induced
flexural strength increases more significantly. For instance, an increase of 5 wt% mnanosilica in the
mixes containing the highest content of fibers (0.3% steel fiber, 0.2% polypropylene fiber and 0.2%
glass fiber), increased the flexural strength as much as 76, 53 and 75 percent, respectively, compared
with the reference sample. Flexural strength assessments demonstrated that having filler and poz-
zolanic effects, nanosilica can improve the structural properties and adhesive of the cement matrix-
fibers and mortar—aggregates interfaces area.
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Fig. 8: Flexural strength of the samples containing: a) ST fibers; b) P.P fibers; ¢) Glass fibers
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4.3 Toughness

The main important role of adding reinforcing fibers to concrete is making links between cracks
produced by different causes. If the fibers in volume unit have enough density, strength and are well
ad hered to cement matrix, they can limit the spread of cracks and give the fiber-reinforced con-
crete efficient tolerance against greater stresses after the appearance of cracks. This also improves
the formability of concrete after the appearance of cracks. This formability is called toughness.

Fig. (9) show that increasing the percentage of fibers increases toughness. Steel, polypropylene and
glass fibers can increase toughness in fiber-reinforced concretes up to 20 -30, 5 and about 3 times,
respectively. Obviously metal fibers play more crucial role in boosting toughness. When 3 wt% of
nanosilica is added to the mixture, the fiber-induced toughness is also increased. Increasing the per-
centage of nanosilica to more than 3 wt%, decreased the toughness. This decrease was because of
high values of pull-out strength of fibers in stronger matrixes which was in turn because of the pres-
ence of strong cement matrix-fibers bonds. This characteristic can lead to a brittle rupture without
being pulled out of the matrix. But in mixtures of series B, containing 2 wt% of nanosilica, pull-out
strength between fibers and matrix is so much that delays pulling-out mechanism and causes the
fiber concrete to absorb more energy. Therefore, 3 wt% of nanosilica can be considered as optimal
percentage for the toughness of the mixing designs.
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Fig. 9: Toughness of samples with different fibers: a) ST fibers; b) P.P fibers; ¢) Glass fibers
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4.4 Fracture energy

Fig. (10) indicates that increasing the percentage of fibers increases fracture energy. This behavior
may be explained with the fact that descending branch of the curve load - displacement correlate to
control specimen with increasing fiber percent, has met a significant softening strain that The be-
havior in the samples containing fibers, especially metal fibers significantly in form softer failure
improved and has created more area under the curve of the load — displacement that mainly has
been after the post peak and as the energy absorption capability of control concrete increases.

The figure also shows that with increase of nano-silica percentage the fracture energy increases at
the beginning until an optimum nano-silica percentage (3 wt%) and after that it decreases again.
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Fig. 10: GF of samples with different fibers: a) ST fibers; b) P.P fibers; ¢) Glass fibers.
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5 CONCLUSIONS

In this paper a neural network model was used to estimate the combined effects of fibers and Nano
silica on the on the toughness, flexural strength and fracture energy of Self- Compacting Concrete.
From this investigation, some conclusions were summarized as follows:

In order to predict the toughness, flexural strength and fracture energy, models were constructed
by MLP-ANN method.

Comparison shows that the obtained ANN results have good agreement with the experimental re-
sults

Findings of the flexural assessments among the mixtures showed that increasing the content of
fibers, especially metal fiber, increases flexural strengths and therefore, the consequent formability is
significantly increased. Additionally, increasing nano-silica content to 5 wt%, increases the tensile
and flexural strengths more significantly which is because of the filling and pozzolanic effects of
nano-silica in contact area between fibers and cement matrix.

Evaluating the results of toughness assessments in different mixing designs showed that increas-
ing the fibers contents significantly increased the toughness of concrete. Steel, polypropylene and
glass fibers can boost toughness in fiber concrete up to 20 -30, 5 and about 3 times, respectively. It
shows that steel fibers have better performance with relation to energy absorption capacity.

Increasing nanosilica content up to 3 wt%, increased the toughness of the samples significantly.
However, further increase more than 3 wt%, decreased toughness. This reduction is because of a
highly pull-out strength of fibers in stronger matrixes which in turn is because of the presence of a
strong cement matrix-fibers bond. This strong bond can lead to a brittle rupture without removal of
fibers from the matrix.
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