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Abstract

This work deals with a numerical investigation which has been carried out to study the
crash behaviour of an automotive substructure located in the rear part of a vehicle, using a
new stochastic methodology, Stochastic Design Improvement (SDI). Fundamentally, an iter-
ative Monte Carlo simulation procedure was executed, whose trials consisted of deterministic
numerical analyses based on explicit finite element methodologies.

The SDI procedure has been applied to reduce of a given amount the maximum displace-
ment of a rigid barrier impacting against the rear substructure of a vehicle in a particular
crash test.

The procedure allowed an efficient solution to the considered problem and the final results
were validated through experimental tests.

1 Introduction

It is well known that numerical simulations are used to reduce the number of physical prototypes
needed when designing complex structures, what is of the uttermost importance in the case of
vehicles, where a significant reduction of the final project costs can be achieved by cutting down
the number of crash tests. That leads to the need for a special methodology, complete with
procedures and practical tools, such as to make possible to explore in detail each aspect of the
involved physical phenomenon.

It must be pointed out, however, that numerical simulations carried out according to a
deterministic approach cannot take into account the scattering of the parameters which randomly
influence both the manufacturing process and the impact conditions, which, in turn, induce
heavy effects on the results of such a highly non-linear phenomenon as crash.

Another case where a deterministic analysis can be usefully substituted with a stochastic
analysis is when a target result cannot be achieved because of the scatter of the governing
parameters; it is obvious for the designer to look for a robust design, such as to be influenced
by the variation of parameters to a least extent.
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This work deals with a numerical investigation carried out in the study of the crash behaviour
of an automotive substructure located in the rear part of a vehicle and which makes use of
a new stochastic methodology, Stochastic Design Improvement (SDI), as implemented in the
commercial code ST-ORM [3], which can be coupled with specialized FEM codes as LS-DYNA [2]
for the deterministic structural part of the process [4].

The relevance of this methodology is that it allows the designer to find those values of
the design variables which bring the output objective variables as nearest to a chosen target.
Fundamentally it is based on an iterative Monte Carlo simulation procedure and therefore the
substructure approach enables the designer to speed up the analysis of a large amount of cases
and at the same time to generate enough data for an evaluation of the new methodology.

Moreover, if a test campaign is carried out first to validate numerical results of deterministic
kind, a simpler demonstrator can be used, thus enabling the designers to further reduce the
costs, taking into account a more limited number of design variables.

In the following, after briefly recalling the methodological aspects and the SDI technique, a
case study is shown, where where the improvement process of the crash behaviour of a vehicle
substructure is described [6,10].

The used substructure was made in steel, but the adopted technique can be applied also to
cases where lightweight materials are used and where the effects of the scatter of manufacturing
parameters can be still more relevant.

2 Methodological aspects

If we consider the n-dimensional space, which is defined by the random variables which govern
the problem in hand (“design variables”) and which consist of geometrical, material, loads, envi-
ronmental and human factors, we can observe that those sets of coordinates (x) that determine
the failure are located generally in a domain, which is thus defined as failure domain (£2¢), in
opposition to the whole rest of the same space that, corresponding to the safety condition, is
known as the safety domain ().

In the present context the concept of failure doesn’t correspond to the case of physical
damage, but it simply indicates the condition where the response of the structure doesn’t match
with the design requirements; therefore, both a fatigue life shorter than expected and a beam
deflection larger than required define a “failure” case: it follows that in general the assigned
requirement is met by many — even infinite — designs, each of them being characterized by a
different probability of failure. The probabilistic analysis has the task to take as reference the
design which, among all other cases, exhibits the largest probability to occur, thus defining the
so called Most Probable Point (MPP) or Design Point (DP). A performance function is often
introduced to indicate the extent by which the design is far from the failure case.

To simplify the following considerations, let us limit to the most common case where the
performance value is assumed as zero (failure case) and that the limit requirements are fully
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prescribed. In the thus simplified hypothesis, the general problem of the probabilistic analysis
of a structure is to evaluate, given the distributions of all the variables belonging to x, the
probability that the response of the structure corresponds to a point whatever in the failure
region, thus defining the probability of failure, P;.

Therefore, if f,(x) is the joint probability density of all the said random variables x, such
probability of failure is given by:

Py = /fm -dx = /fxmmxn (x129...20) - dr1dXs...dI), (1)

Qy Qf

Unfortunately such expression is just a formal one in the most cases, because the involved
integral is of complex definition and primarily of impossible solution in a closed form, at most
when dealing with evolutionary problems, where characteristics such as resistance and loads can
vary with time; for such reasons, approximate methodologies of evaluation of the probability of
failure have been introduced, which can be considered of two main typologies (with different
approximations and with a lot of existing variations):

1. methodologies that use the limit state surface (LSF: the surface that constitute the bound-
ary of the failure region) concept: they belong to a group of techniques that model variously
the LSF in both shape and order and use such approximate surface to obtain an approx-
imate probability of failure; among these, for instance, particularly used are the FORM
(First Order Reliability Method) and the SORM (Second Order Reliability Method), that
represent the LSF respectively through the hyper-plane tangent to the same LSF in the
design point or through an hyper-paraboloid of rotation with the vertex in the same point.

2. Simulation methodologies, which are of particular importance in presence of complex prob-
lems: fundamentally they use the Monte-Carlo (MC) technique for the numerical evalu-
ation of the specified integral and therefore they define the probability of failure on a
frequencial approach [7,8].

As it is known, the application of the MC method is based on the execution of a certain num-
ber, N, of experiments; for each one of those trials a set of design variables is extracted randomly
and the resultant behaviour of the structure is analyzed, simply recording if it corresponds to
the failure condition or not: if the failure condition is verified Ny times, the probability of failure
is simply furnished frequencially by the ratio N;/N.

Even if the MC method — which is now considered as founded on a sound base [9] — gives
a result which is an unbiased estimator of the previous integral, obvious procedural difficulties
arise, since only a finite number of experiments can be carried out, and therefore the obtained
result is affected in many cases from a large interval of confidence or, alternatively, from a small
level of confidence.
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Consider, for instance, an hypothetical case for which the theoretical probability of failure
is 1073; if 1.000 experiments are performed, it can happen that no trial gives a failure result,
which would force to accept the impossible result of a probability of failure equal to zero; but one
could also obtain that, because of the random extraction of the variables, the failure condition
is verified 2, 3 or also 5 times, from which the evaluated probability of failure would exceed the
real one many times.

The most common case is the first one, so we can say that with a few number of experiments
the calculated probability of failure is in general (but not theoretically) smaller than the real
one; this happens because in the random extraction the design variables are mostly positioned
approximately around their mode and, if the project has been realized correctly from a deter-
ministic standpoint, such values necessarily correspond to a condition of safety: therefore, the
largest part of the experiments will tend to exclude the condition of failure unless a large number
of trials is carried out.

In practical problems the previous danger is very relevant, as one is interested to evaluate
very small probabilities of failure, at present down to 10~ if many human lives are at a stake; in
any case, even if the knowledge of the order of magnitude of the probability of failure can often
be considered as sufficient, it is clear that a huge number of experiments have to be carried out,
which implies very time-expensive procedures, expecially if the results are obtained by using a
numerical code on a large structure.

To obviate to such serious problem, modifications of the MC method have been introduced,
which are commonly known as techniques for the reduction, or the optimization, of the coefficient
of variation (of the result); among these particularly interesting is the so-called method of the
Response Surface (RSM), with which an approximate model of the LSF is built on the base
of the results of a first set of experiments and then progressively improved with the following
trials, in order to obtain a numerical form of the surface such as to let the user to adopt
procedures similar to those used in the previous group of techniques. Other procedures which
are increasingly adopted today include importance sampling, directional simulation, domain
restricted sampling and others.

All such techniques are especially useful in structural field, where the LSF is usually impos-
sible to define analitically, since they allow to reduce the number of the MC experiments, that
are very expensive from a computational point of view for a complex structure or a particular
phenomenon, such as the impact of a vehicle.

Obviously, the LSF obtained with a few number of experiments is approximate, so an al-
ternative way to proceed is to continue with the MC method and with new structural analyses
observing the subsequent changes of the LSF and arresting only when it doesn’t change anymore.

The aim of the previous discussion was the evaluation of the probability of failure of a given
structure, with assigned statistics of all the design variables involved; the reciprocal problem
can be considered now, that is the definition of the design which is characterized by a given
probability of failure, i.e. of mismatch with the prescribed requirements.

Usually, that problem can be solved for simple cases by assigning the coefficients of variation
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of the design variables and looking for the corresponding mean values; the above mentioned
hypothesis referring to the constancy of the coefficients of variation is usually justified with the
connection between variance and quality levels of the production equipments, not to mention
the effect of the nowadays probabilistic techniques, which let introduce just one unknown in
correspondence of each variable.

In any case, one must consider that, at least in the structural field for the case of large
deformations, the relationship between the statistic of the response and that of a generic design
variable for a complex structure is in general non-linear; it is in fact evident from fig. 1 that
two different mean values for the random variable x, say x4 and xp, even in presence of the
same standard variation, correspond to responses centered in y4 and yg, whose coefficients of
variation are certainly very different from each other.

It follows from what above that the statistics of the result can be largely dependent not
only on the type of the statistics of the design variables, but also from the starting point of the
analysis, i.e. from the initial mean value of the same variables; it is therefore possible to look
for those values of the same design variables which correspond to a result, i.e. a design, which is
characterized by the smallest variance, and that is, in fact, the definition of a “robust design” as
given by Taguchi, in a field which is not strictly connected with the evaluation of a probability
of failure.

Yp

Yy

X, Xp X
Figure 1: non linear relationship between input and output variable.

As it is nowadays accepted, however, the requirements of the amplitude of the variance of the
result can be substituted with the need to satisfy an assigned condition whatever and, among
others, a given probability of failure.

Consequently, while in the usual probabilistic problem we are looking for the consequences
on the realization of a product arising from the assumption of certain distributions of the design
variables, in the theory of the robust design the procedure is reversed, now looking for those
statistical parameters of the design variables such as to produce an assigned result (target), as
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characterized by a given probability of failure.

It must be considered, however, that no hypothesis can be introduced about the uniqueness
of the result, in the sense that more than one design can exist such as to satisfy the assigned
probability, and that the result depends on the starting point of the analysis, which is a well
known problem also in other cases of probabilistic analysis. Therefore, the most useful way to
proceed is to define the target as a function of a given design solution, for example of the result
of a deterministic procedure, in order to obtain a feasible or convenient solution, as it will be
shown in the next sections.

3 The SDI process

A set of techniques has been introduced in order to obtain a robust design, i.e. one whose
behaviour is rather insensitive to all variations of the main variables, or, what is the same, a
design whose statistics are characterized by the smallest standard deviation, as a function of
the statistics of input; as we reported above, the same procedure can be used to obtain a design
which exhibits an assigned probability of failure, by means of a correct choice of the mean values
of the design variables.

This problem can be effectively dealt with by an SDI (Stochastic Design Improvement) [5]
process, which is carried out by means of several MC series of trials (runs) as well as of the
analysis of the intermediate results.

In fact, input — i.e. design variables x — and output — i.e. target y — of a mechanical system
can be connected by means of a functional relation of the type

y =F() , (2)

which in the largest part of the applications cannot be defined analytically, but only ideally
deduced because of the its complex nature; in practice, it can be obtained by considering a
sample x; and examining the response y;, which can be carried out by a simulation procedure
and, first of all, by one of M-C techniques, as recalled above. Considering a whole set of M-C
samples, the output can be expressed by a linearized Taylor expansion centered about the mean
values of the control variables, as

dF

Yi = F(Uz)“’% (xi_ﬂx) = uy+G(xi_Mx) , (3)

where p; represents the vector of mean values of input/output variables and where the gradient
matrix G can be obtained numerically, carrying out a multivariate regression of y on the x
sets obtained by M-C sampling. If y( is the required target, we could find the new xg values
inverting the relation above, i.e. by

z0 = pe + G (o — py); (4)
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as we are dealing with probabilities, the real target is the mean value of the output, which we
compare with the mean value of the input, and, considering that, as we shall illustrate below,
the procedure will evolve by an iterative procedure, it can be stated that the relation above has
to be modified as follows, considering the update between the k-th and the (k+1)-th step:

Hz0 = Hzk+1 = MHzk + Gil (,Ufy,k+1 - ,UJy,k) = gk T Gil (,UyO - ,Ufy,k:) . (5)

The SDI technique is based on the assumption that the cloud of points corresponding to the
results obtained from a set of MC trials can be moved toward a desired position in the N-
dimensional space such as to give the desired result (target) and that the amplitude of the
required displacement can be forecast through a close analysis of the points which are in the
same cloud (fig 2): in effects, it is assumed that the shape and size of the cloud don’t change
greatly if the displacement is small enough; it is therefore immediate to realize that an SDI
process is composed by several sets of MC trials (runs) with intermediate estimates of the
required displacement.

It is also clear that the assumption about the invariance of the cloud can be maintaned just
in order to carry out the multivariate regression which is needed to perform a new step —i.e. the
evaluation of the G matrix — but that subsequently a new and correct evaluation of the cloud
is needed; in order to save time, the same evaluation can be carried out every k steps, but of
course, as k increases, the step amplituded has to be correspondently decreased.

It is also immediate that the displacement is obtained by changing the statistics of the
design variables and in particular by changing their mean (nominal) values, as in the now
available version of the method all distributions are assumed to be uniform, in order to avoid
the gathering of results around the mode value. It is also to point out that sometimes the process
fails to accomplish its task because of the existing physical limits, but in any case SDI allows to
quickly appreciate the feasibility of a specific design, therefore making easier its improvement.

Of course, it may happen that other stochastic variables are present in the problem (the so
called background variables): they can be characterized by any type of statistical distribution
included in the code library, but they are not modified during the process.

Therefore, the SDI process is quite different for example from the classical design optimiza-
tion, where the designer tries to minimize a given objective function with no previous knowledge
of the minimum value, at least in the step of the problem formulation. On the contrary, in the
case of the SDI process it is first stated what is the value that the objective function has to
reach, i.e. its target value, according to a particular criterion which can be expressed in terms
of maximum displacement, maximum stress, or other. The SDI process gives information about
the possibility to reach the objective within the physical limits of the problem and determines
which values the project variables must have in order to get it. In other words, the designer
specifies the value that an assigned output variable has to reach and the SDI process determines
those values of the project variables which ensure that the objective variable becomes equal to
the target in the mean sense. Therefore, according to the requirements of the problem, the
user defines a set of variables as control variables, which are then characterized from a uniform
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statistical distribution (natural variability) within which the procedure can let them vary, ob-
serving the corresponding physical (engineering) limits. In the case of a single output variable,
the procedure evaluates the Euclidean or Mahalanobis distance of the objective variable from
the target after each trial:

dz:|yz*y*| 1 = 1,2,...,N, (6)

where y; is the value of the objective variable obtained from the i-th iteration, y* is the target
value and N is the number of trials per run. Then, it is possible to find among the worked trials
that one for which the said distance gets the smallest value and subsequently the procedure
redefines each project variable according to a new uniform distribution with a mean value equal
to that used in such “best” trial. The limits of natural variability are accordingly moved of the
same quantity of the mean in such way as to save the amplitude of the physical variability.

Target mean value of

Target mean value of the structural response

the structural response y

y
3+ Path_followed by trials

3]
2—
1
0 . Initial mean value of
0 Initial mean value 0 the structural response

the structural resp

Figure 2: SDI process

If the target is defined by a set of output variables, the displacement toward the condition
where each one has a desired (target) value is carried out considering the distance as expressed

by:
di = \/Zk (vir — ;)" (7)

where k represents the generic output variable. If the variables are dimensionally different it is

advisable to use a normalized expression of the Euclidean distance:

d; = \/zwk (3i1)?, (8)

dip = -1, if yp #0

dik = Yik if y, =20

but in this case it is of course essential to assign weight factors wy to define the relative impor-

where:

: 9)

tance of each variable.
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Several variations of the basic procedures are available; for example, it is possible to define
the target by means of a function which implies an equality or an inequality, too; in the latter
case the distance is to be considered null if the inequality is satisfied.

Once the project variables have been redefined a new run is performed and the process
restarts up to the completion of the assigned number of shots. It is possible to plan a criterion
of arrest in such way as to make the analysis stop when the distance from the target reaches a
given value. In the most cases, it is desirable to control the state of the analysis with a real-time
monitoring with the purpose to realize if a satisfactory condition has been obtained.

4 Approaching a test case

In the present work, the SDI procedure is applied to reduce the maximum value of the displace-
ment in time of a rigid barrier that impacts the rear substructure of a vehicle (fig. 3 and fig. 4)
in a crash test. The reasons which lie behind such a choice are to be found in the increasing in-
terest in numerical analysis of crashworthiness of vehicles because of the more strict regulations
concerning the protection of the occupants and related fields.

In Europe the present standards to be used in homologation of vehicles are more or less
derived by U.S. Code of Federal Regulations, CFR-49.571, but ever increasing applications
are done with reference to other standards, and first of all to EURONCAP. The use of such
standards, whose are mainly directed to limit biomechanical consequences of the impact — which
are controlled by referring the results to standard indexes related to different parts of human
body — implies that, besides the introduction of specific safety appliances, as safety belts and
airbags, the main strength of car body has to be located in the cell which hosts passengers,
in order to obtain a sufficient survival volume for the occupants; the other parts of the vehicle
are only subsidiary ones, because of the presence of absorbers which reduce the impact energy
which is released on the cell.

Therefore, such considerations can induce designers to disregard the strength of those other
parts, with the consequence that even light impacts can induce heavy and expensive damages
on the car body. To limit those consequences, in recent times a new type of analysis has been
introduced, which refers to low speed impacts and which is often supported by insurance firms
— from which it is currently known as “insurance impact” — where the impact speed is limited
to 16 km/h, while in the other tests the same impact speed is 56 or 65 km/h according to the
specific standards.

Because of the small amount of energy released in such impacts, crash tests can be limited
to substructures or small parts of the vehicle, which requires small apparatuses for experimental
tests, or corresponding relatively small models in the case of numerical analyses. As the main
scope of the present work was to test the capabilities of SDI technique, which, as it will be
shown later, requires a large number of numerical tests, an obvious choice was to refer to such
an impact and to limit our attention to a specific substructure located in the rear part of a
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Figure 3: Global FEM model.

vehicle, with the consequence that rather fast runs were obtained even in presence of the fine
mesh adopted, as it is always needed when simulating impact conditions.
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Figure 4: FEM model details (impact absorber).

5 Performing SDI analysis

We can add to all previous considerations that the present case study has been adopted as it
is well known that vehicle components come from mass production, where geometrical imper-
fections are to be expected as well as a certain scatter of the mechanical properties of the used
materials; then, it can’t be avoided that the said variations induce some differences of response
among otherwise similar components, what can be relevant in particular cases and first of all
in impact conditions; the analysis which has been carried out was directed to define, through
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the use of the previously sketched procedure, the general criteria and the methodology required
to develop a robust design of those vehicle components which are directly used to limit plastic
deformations in impact (impact absorber). In our particular case, the study was carried out
with reference to the mentioned substructure, whose effective behaviour in impact (hammer)
conditions is known and is associated to those deterministic nominal values of the design vari-
able actually in use, with the immediate objective to obtain a reduction of the longitudinal
deformation of the impact absorber.

The substructure is a part of a rear frame of a vehicle, complete with cross-bar and girders,
where impact absorbers are inserted; the group is acted upon by a hammer which is constrained
to move in the longitudinal direction of the vehicle with an initial impact speed of 16 km/h;
the FE model used for the structure consists of about 23400 nodes and about 21900 elements of
beam, shell and contact type, while the hammer is modelled as a “rigid wall”.

The thicknesses of the internal (lower in the fig. 3) and external (upper in the fig. 3) C-
shaped plates of the impact absorbers have been selected as project variables, with a uniform
statistical distribution in the interval [1.7mm--1.9mm]; lower and upper engineering limits are
respectively 1.5 mm and 2.1 mm.

This choice has been carried out by preliminary performing, by using the probabilistic module
of ANSYS ver 8.0 [1] linked to the explicit FE module of LS-Dyna included in the same code, a
sensitivity analysis of an opportune set of design variables on the objective variable, that is, as
already stated before, the maximum displacement of the hammer.

The considered design variables involved in the sensitivity analysis have been chosen, besides
the inner and outer thicknesses of the C-shaped profile of the impact absorbers, to be the me-
chanical properties of the three materials constituting the main components of the substructure
(the unique young modulus and the three yielding stresses). In the following fig. 5 it is possible
to appreciate the “relationship” existing between the chosen design variables and the objective
variable by considering the scatter plots between them.

From these scatter plots it is clear that while the relationship existing between the thicknesses
of the inner and outer C-shaped profile of the impact absorber and the objective variable is quite
linear, as well as the relationship between the yielding stress of the impact absorber material
and the same objective variable, a relationship between the other considered variables and the
objective variable is undetermined.

In the following fig. 6, the results from the sensitivity analysis are also reported: it is quite
evident that the only design variables which influence the objective one are the mechanical
properties of the material of the impact absorber and the thicknesses of their profile.

A preliminary deterministic run, carried out with the actual design data of the structure
gave for the objective variable a 95.94 mm “nominal” value, which was reached after a time of
38.6 ms from the beginning of the impact. The purpose of SDI in our case has been assumed to
reduce this displacement by 10% with respect to this nominal value and therefore an 86.35 mm
target value has been assigned.

The mechanical properties of the three materials constituting the absorbers and the rear
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crossbar of the considered substructure have also been considered as random; it has been assumed
that their characteristic stress-strain curves may vary according to a uniform law within +5%
of the nominal value. This has been possible by introducing a scale factor for the characteristic
curves of the materials, which has been considered as uniformly distributed in the interval [0.95,
1.05].

Moreover, four stress-strain curves have been considered for each material, corresponding to
as many specific values of the strain-rate. The relationship among those curves and the static
one has been represented, according to the method used in Ls-Dyna, by means of a scale factor
which let us pass from one curve to another as a function of the strain-rate; also those factors
have been assumed to be dependent on that applied to the static curve, in order to avoid possible
overlapping.

Therefore, the simulation has involved 14 random variables, among which only 2 are consid-
ered as project variables; in the following Tab. 1 the properties of all the variables are listed.

Table 1: Properties of variables.

Variable Type Distribution N:fltu,r?l Pl-lys‘lcal
variability limits

Internal plate thick. Design var. uniform 1.7-1.9 1.5-2.1

External plate thick. Design var. uniform 1.7-1.9 1.5-2.1

glétoeil:ér:i{i;::?r independent var. uniform 0.95-1.05

material scale factor dependent var

DC04 strain-rate 0.005 '

material scale factor dependent var

DC04 strain-rate 0.05 ’

material scale factor dependent var

DC04 strain-rate 0.5 ’

gl;tﬁeg 8a;ti(;?iirf:tcet%r independent var. uniform 0.95-1.05

material scale factor dependent var.

DP600 strain-rate 0.005

material scale factor dependent var

DP600 strain-rate 0.05 ’

material scale factor dependent var.

DP600 strain-rate 0.5

gg;t;lr\llacl :Elflalienfi:mzzro independent var. uniform 0.95-1.05

material scale factor dependent var

S355NC strain-rate 0.03 '

material scale factor dependent var

S355NC strain-rate 0.5 ’
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As we said above, St-Orm used Ls-Dyna explicit solver for each deterministic FEM analysis
and ran on a 2600 MHz bi-processor PC, equipped with a 2 Gb RAM; SDI processing required
9 runs with 25 shots each, with a total of 225 MC trials, and the time required to complete a
single LS-Dyna simulation being of about 2 hours.

6 Analysis of results and conclusions

As we already pointed out in the previous paragraphs, the stochastic procedure develops through
an MC iterative process where the input variables are redefined in each trial in such a way as
to move the results toward an assigned target; therefore, we need first to assess what we mean
as an attained target.

After every run the statistics of the output variables can be obtained, as well as the number
of times that the target is reached, what can be considered as the probability of attainment of
the target for the particular design, expressed through the mean values of the input variables.

It is noteworthy to specify that these data are only indicative, because the MC procedure
developed within a single set of trials is not able to give convergent results due to the low number
of iterations.

Therefore, considering the procedure as ended when a run is obtained where all trials give
the desired target value, it is opportune to perform a final MC convergent process to evaluate
the extent by which the target has been indeed reached, using the statistical distributions of the
variables of the last run. For the same reason, a real-time monitoring can induce the designer
to stop the procedure even if not all trials — but “almost” all - of the same run give the target
as reached, also to comply with production standard and procedures.

Table 2: detailed data for every run.

Thickness of the Thickness of the Displacement Distance from
internal sheet [mm)] external sheet [mm] [mm)] target
un left mean right left mean right mean std mean std
bound | value | bound | bound | value | bound value value

1.7000 | 1.8000 | 1.9000 | 1.7000 | 1.8000 | 1.9000 | 95.9524 | 2.4504 | 0.0585 0.0270

1.7903 | 1.8903 | 1.9903 | 1.7909 | 1.8909 | 1.9909 | 91.5568 | 2.3917 | 0.0158 0.0190

1.7127 | 1.8127 | 1.9127 | 1.8322 | 1.9322 | 2.0322 92.5833 | 2.4903| 0.0240 0.0232

1.7297 | 1.8297 | 1.9297 | 1.8795 | 1.9795 | 2.0795 | 91.0362 | 2.3111| 0.0132 0.0144

1.7624 | 1.8624 | 1.9624 1.9475 | 2.0238 | 2.1000 | 88.8615 | 2.1464 | 0.0026 0.0061

1.7632 | 1.8632 | 1.9632 | 2.0000 | 2.0500 | 2.1000 | 88.0821 | 1.6937 | 0.0005 0.0016

1.7446 | 1.8446 | 1.9447 | 1.9259 | 2.01295| 2.1 89.6456 | 2.2662 | 0.005384 | 0.01072

1.7831 | 1.8831 | 1.9831 1.9385 | 2.0193 2.1 88.5974 | 2.1700| 0.002176 | 0.00664

O[O0 || U =W N~

1.8778 | 1.9778 | 2.0778 | 1.8846| 1.9846| 2.0846 | 87.6936 | 2.1465 | 0.0009655 | 0.00367
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For what concerns our case study, the detailed data for every run are recorded in Tab. 2;
if compared with the first run, the mean of the displacement distribution in the 9th run is
reduced of 8.6% and 23/25 shots respect the target: therefore, the results of the 9th run may
be considered as acceptable.

In the plots of fig. 7 and fig. 8 the values of the thickness of the internal and external plates
of the impact absorber versus the current number of shots have been illustrated. The variable
which was subjected to the largest modifications in the SDI procedure is the thickness of the
external plate of the impact absorber and in fact from an analysis of sensitivity (fig. 6) it results
to influence at the largest extent the distance from the target.

MEAN > Shot Number - dv_2 hd MEAN ->> Shot Number - dv_1

Ay

PR il CEER KR
s v s wn s e[ ot frrme e [pamm ot e ot
Egort] Frint| Close| Bert] Print] Clase|

Figure 7: design variable vs. shot number. Figure 8: design variable vs. shot number.

For what concerns the other random variables, it results from the same analysis of sensitivity
that only the material of the absorbers (S355NC in fig. 6) influences in a relevant measure the
behaviour of the substructure.

In the plots of fig. 9 and fig. 10 the path followed by the mean value of the distribution of
the displacement of the rigid barrier (the objective variable) and by its distance from the target
versus the current number of iterations are illustrated; it is necessary to clarify that in our plots
the relative distance to target is recorded.

It is possible to appreciate from the scatter plots of fig. 11 and fig. 12 how the output
variable approaches the target value: in the 9th run, only 2 points fall under the red line that
represents the target and in both cases the distance is less than 0.02 and that is why the 9th
run has been considered a good one, in order to save more iterations.

In fig. 13 the experimental data related to the displacement of the rigid barrier vs. the time
are recorded together with the numerical results obtained before and after the application of the
SDI procedure.
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hd MEAN > Shot Number - obj_1
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Figure 9: Mean of the objective variable dis-
tribution vs. shot number.

hd PLOT ->> Shot Number - obj 1
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Figure 11: scatter plot of objective variable

hd MEAN ->> Shot Number - out 2
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Figure 10: Distance to target vs. shot num-
ber.

hd PLOT ->> Shot Number - out 2

A

PR sl
e otz s e[ gttt
Export]| Frint] Close|

Figure 12: scatter plot of distance to target.
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The new nominal value of the design variables after the application of SDI procedure is 1.98
mm for both of them.

A very good agreement of the numerical solution is observed in comparison to the exper-
imental data in the first part of the curve, where they are practically overlapped and where
the attention has been focused during the development of numerical simulations necessary to
complete the SDI process.

The general conclusion from this study has been that the classical numerical simulations
based on nominal values of the input variables are not exhaustive of the phenomenon in the
case of crash analyses and can bring to incorrect interpretations of the dynamic behaviour of the
examined structure. On the contrary, by using an SDI approach, it is possible to have a better
understanding of the influence of each input variable on the structural dynamic behaviour and
to assign the most appropriate nominal values in order to have results as near as possible to the
target values, also in presence of their natural variability.

—————— SDI
—_—— Experimental
Nominal
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Figure 13: Output variable vs. time
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