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Abstract

Utilizing the strain gradient notation process and the free formula-
tion, an efficient way of constructing membrane elements will be
proposed. This strategy can be utilized for linear and geometric
non-linear problems. In the suggested formulation, the optimiza-
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al motions. In this article, a novel triangular element, named
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problems having irregular mesh and complicated geometry with
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comes clearly demonstrate the efficiency of the new formulation.
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1 INTRODUCTION

Various types of formulation have been established since 1980s. The two most famous ones are
named free formulation (Bergan and Nygard, 1984) and assumed strain scheme (MacNeal, 1978).
Based on these works, the high—performance elements were formulated. Some of the conspicuous
characteristics of these elements are: simplicity, rapid convergence, yielding similar accuracy in dis-
placements and strains, rotational invariance, rank sufficiency, insensitivity to geometric distortion
and being mixable with other elements (Felippa, 1994).

During the early 90s, the parameterized variational principle dramatically changed the knowledge
towards highly efficient element formulations. Based on this principle, researchers managed to de-
fine a continuous space of the elastic functional. In the early 1990s, the parameterized variational
principle was applied in the finite element method. Consequently, the formulation of high—
performance elements was developed more fully, and a continuous space of the elastic functionals
was provided. Making the continuous space of the functionals stationary, produces free parameters
for the formulation of the element (Felippa and Militello, 1990). As a result, this will lead to the
construction of finite element templates. Note that the optimization process of templates is quite
complex and requires innovations. The large number of the free parameters, symbolic processing
and optimizing the entries of the matrix are the difficulties which are encountered in the process.
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As Bergan and Nygard were attempting to develop free formulation, John Dow et al. proposed an-
other scheme named strain gradient notation (Dow, 1999). In the latter technique, the displacement
interpolation field is expressed in terms of strain states. In this way, the roots of many errors in
finite element method can be investigated and eliminated. It should be added that strain gradient
notation is an explicit and simple representation of free formulation. Utilizing the strain gradient
notation process and the free formulation, displacement and strain fields were written in terms of
strain states. In addition, several optimality conditions were proposed. By using these optimality
criteria, the resultant element becomes rotational invariance and insensitive to geometry distortion.
Moreover, the parasitic shear error is eliminated, and the equilibrium equations are satisfied in this
formulation.

Co-rotational technique is usually employed in finite element formulation for the geometrically non-
linear analysis of structures. Although, this scheme has been widely utilized in construction of solid
(Norachan et al., 2012), shell (Li and Vu—-Quoc, 2007; Battini, 2007), bending plate (Izzuddin, 2005)
and beam elements (Battini, 2008a; Urthaler and Reddy, 2005), it has been rarely employed in
plane structures. In this tactic, the rigid body motions are separated from deformations causing
strains. This goal is achieved by attaching a local reference frame to the element. This coordinate
system rotates and translates with the elements of the structure. To relate the global coordinate
system to the co—rotating one, a transformation matrix is required. It should be added that some of
the formulations in linear space are by themselves complicated. Hence, it is quite difficult to trans-
form them from a linear space to a nonlinear one. This is particularly the case in which the tem-
plate process proposed by Felippa is used (Felippa, 2006; Battini, 2008b). There is no need for
transforming matrix in the mentioned formulation, and a general coordinate can realize the rigid
body motions.

In the following sections, the simplicity and robustness of suggested technique in the geometrical
nonlinear analysis of structures will be clearly demonstrated. Based on proposed formulation, a new
triangular element, named SST10, is suggested. It is worth emphasizing that the suggested element
is useful to analyze the plane problems with irregular mesh and complicated geometry. Note that
the triangular elements are able to model the geometry of the structure more properly. However,
the low—order triangular elements are less accurate than the quadrilateral elements (Eom et al.,
2009). It should be added that various methods have been deployed to construct triangular elements
(Felippa, 2003a; Zhou and Sze, 2012; Pan and Wheel, 2011; Huang et al., 2010; Caylak and Mahnk-
en, 2011). In the following sections; several numerical tests are performed to demonstrate the capa-
bilities of the proposed formulation. The results indicate high accuracy, low sensitivity to geometry
distortion, rotational invariance and rapid convergence. Furthermore, it is proven that SST10 ele-
ment performs properly in nonlinear numerical tests.

2 STRAIN GRADIENT NOTATION FORMULATION

In strain gradient notation, Taylor series expansion of the strain field is expressed around the coor-
dinates’ origin (Dow, 1999). In the two—dimensional state, the strain field has three coming appear-
ances:

2 2
8, 009) = (&), * (B doX * (8 )oY + (B do(5) * (B o (X¥) + (8, ) () + -
2 2
6 00Y) = (8))s + (800X + (8, )oY * (&, )0(5) + (8o (9) * (8 )o(2) + . (1)
2 2
gxy(xiy) = (ng)O + (ng,X )OX + (gxy’y)oy + (gxyyxx)o(x?) + (ng,Xy)O(Xy) + (gxy’yy)o(y?) T

In these equations, 0as a subscript denotes the gradient of strains in the origin. It should be re-
minded that magnitudes of the strain gradient at the origin are called the strain states. (e,),is the
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magnitude of axial strain e, at the origin. (e,,), and (ey)o are the rate of e, variation in r and y

directions, in the origin’s vicinity, respectively. Similarly, other coefficients can be defined. To ob-
tain the displacement field, the coming strain—displacement equations and rotation function are
applied.

& :6_u > & :a_v ' =@+@ 2
o T oy T Ty ax @)
=2 &-2 )

" 20x oy

By considering the strains and rotations in the origin, linear parts of the displacement field can be
determined. It is important to note that coefficients of the higher—order terms of the displacement
field can be similarly obtained by deploying derivatives of the strains. Finally, the element’s fields
can be expressed as below:
U=U +(&,)- X+ (1 /2= 1)y + (£, )- X2+ (£, ). XY + (Dyyy =€) Y12 ...
V=V 4 (g 2+ 5). X+ (8,). Y+ (g =64y ). X124 (). XY + (8, Y12 + ...

(4)
Where ujand v, are the rigid translations in z and y directions, respectively.

3 OPTIMALITY CONDITIONS

To construct the efficient elements, the optimization condition can be inserted into the formulation.
In this way, the roots of many errors may be recognized. In the following sections, several optimali-
ty constraints are introduced.

3.1 Satisfying the equilibrium equations

For a homogeneous elastic continuum in a plane—stress or plane—strain state, the equilibrium equa-
tions are written in the following form:

0o, (%Y) 0ry (%) +F (x,y)=0
ox oy o )
or,y (X,y) 0o, (X,y) B
+ +F,(x,y)=0
OX oy

Where, the functions F, (x,y) andF (x,y) are respectively the force field functions along the z and y

directions in a rectangular coordinate system. It is worth reminding that in planar problems, the
gradient of the force field, in the perpendicular direction (z) to the plane of the element, is equal to
zero. The stress fields are defined in the rectangular coordinate system. Utilizing the stress—strain
relations, equation 5 can be rewritten in terms of the strain fields. Considering Hooke's law for a
homogeneous elastic condition, the following relations are valid for a plane problem:
S, = Ge, + (e, +¢)
s, = Ge, + I (e + ey) (6)
t, = Gg,
nE nE
, and
1+ n)@- 2n) 1+ n@- n)
and plane-stress cases, respectively. The shear modulus, Poisson's ratio and elastic modulus, are

denoted by G, v and E, correspondingly. Introducing equation 6 into relation 5 will result in the
following equilibrium equations:

In the above equation, | will be equal to for the plane—strain
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+F(x,y)=0

(2G +i) (%X(X,y) +168y(x7y) +Gayxy(xly)
OX oy

OX

(X,y) .

(M)
726009 | oG4 )%
oy oy

G

0 :
Py (%,Y) +F,(x,y)=0
OX

3.2 Planar pure bending test

This test has been utilized for finding the optimum bending templates by Flippa (Felippa, 2003a,
2003b, 2006). In this work, Euler-Bernoulli beam has been applied to assess the response of the
template to planar bending in z and y directions. For this purpose, the energy ratios (r) are meas-

ured. It should be added that r, and r, denote the bending energy ratios of the beam’s rectangular

part in z and y directions, respectively. Note that an element will be capable of modeling the bend-
ing in any arbitrary directions when r, = 1 or r, = 1 (r = 1). On the other hand, an element will
be over stiff or over flexible while r > 1 or r < 1. Any aspect ratio of the element will have opti-
mum behavior in bending when (r = 1). If (r) increases as the aspect ratio soars, the locking shear
will appear in the element.

At this stage, the mentioned test is investigated based on the strain states. In planar bending in x
direction, the real stress field varies linearly along the y direction. By employing the Hook’s law, the
strain field can be given as the next form:

e =b +by , e =by+by , g, =0 (8)

Where, b;, b,, b, and b, are constant coefficients. According to equations 8, it is obvious that
only (e, ), ,(ey)o ,(eX'y ), and (ey'y ), participate in the aforementioned strain field. Similarly, for bend-
ing in y direction, (e ), ,(ey)o (8 x)o and (ey’X)0 are incorporated into the real strain field. Hence,

()0 (8y Do (B x)o s (B )0 (&) ) and (e,y), are required for achieving the real responses in planar

bending case. In addition, the element assumed strain field should always include constant strain
states and the rigid motions states. This condition is necessary for convergence. It is worth empha-
sizing that the planar bending test based on the strain states can be used for any element with any
geometries and meshes. In other words, not only it can be utilized for triangular and rectangular
elements, but also it can be employed for other elements.

3.3 Rotational invariance

In a number of the specific elements, properties of the element will not change with rotation of the
coordinate system. These elements fall in the category of the rotational invariance elements. Since
elements can be configured with different rotational orientation in the mesh of a structure, the ele-
ment should be rotational invariance. In order to have the latter property, terms of the strain field
with a complete order should be considered (Dow, 1999). For example, rotational mapping of a
constant strain state is as follows:

(&0). = (&,). c0s’0+(g,). sin?0 +(y,, ). sin 6 cosd
(&,). = (&,).5In’0+(¢,). c0s’6—(y,,). sin & cosd (9)
(V). =2((s,). = (s,).) sin 6 cos + (y,,,), (cos’0 —sin *6)

According to this equation, an element is capable of representing constant strains with respect to
any system of the coordinates, only if its formulation takes into account all three cases of the con-
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stant strain states. It should be mentioned that invariance constraint has been used by researchers
in the development of fine element templates (Felippa, 2000; Felippa and Militello, 1999).

3.4 Lack of the parasitic shear error

The appearance of axial strain states in the shear strain interpolation function causes the parasitic
shear effect, which itself will lead to stiffen of the element (Dow, 1999). In order to gain knowledge
about parasitic shear error, the formulation of the four—node rectangular element is examined. The
interpolation functions of this element consist of an incomplete polynomial which contains neither z*
nor 3’ terms. The strain gradient notation of these terms is as follows:

U=U +(g) X+ (yy /2 =1).y +(g,)- Xy
V=V, + (1,2 +1). X+ (e,). Y+ (g,,). XY

Based on the strain—deformation relations (equations 2), the interpolation functions of the element
can be written in the following form:

e, (x.y)=(g,). +(g,).y
e, (X,y) = (g,). + (g,). X (11)
Py (X2Y) = (2 ). + (e ). X+ (). Y

The advantages and the deficiencies of this model can be investigated through Taylor's expansion of
this polynomial. By examining the shear strain series, it is noticed that the shear strains are inde-

(10)

pendent of the axial strain. In the shear strain interpolation function, two strain states (exvy ), and

(eyyx ), improperly appear. Hence, if the element undergoes flexural deformations, the strain states

will be nonzero and will incorrectly represent a portion of the shear strain.

For elements which are formulated using the strain gradient notation, the parasitic shear error can
easily be eliminated by excluding the incorrect strain states from the shear strain polynomial. The
parasitic shear error decreases as the finer meshes are used. However, even coarser meshes can pro-
duce good results if elements are exempted from this error. It should be noted that utilizing com-
plete interpolation functions will prevent the appearance of this error. Considering the abovemen-
tioned statements, the following strain states will be used for the model:

UgrVor o (8o (8 Dor (Gxy Jor (B x)or (By dor (8 )0r (B )or (T x)or (Byy Do (12)

4 LINEAR FORMULATION

Using the abovementioned strain states (equation 12), the displacement field of this model is defined
as below:

U=U + (&) X+ (142 = 1) Y + (6,)- X212+ (6, ) XY + (7 —£4x)- Y /2 13)
VSV Oy 24 0). X (5,). Y+ (g — 5 ) 012 (5, ) XY (5, Y2 |
The strain field is obtained as follows:
ex (le) = (ex )o + (ex'x)ox + (ex’y)oy
ey(le) = (ey)o + (eyyx)ox + (ey'y)oy (14)
Oy (G Y) = (9 ) + (Gyyx)oX * (Gyyy )oY
It should be added that z—y coordinates is a general one, and can be assumed anywhere in the prob-
lem domain. Based on relation 14, equation 7 can be written as below:
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(26 +2)(e,,). +Aey,).

(). = -
 Meyy). +(2G + A)(ey,). (15)

() = S

In these relationships, the body forces are assumed to be zero. According to equations 15, both

strain states, (gxyyx ), and (gxyvy)0 can be expressed in terms of other strain states. By employing

these equations, the number of the unknowns will be decreased to 10. Furthermore, the vector of
the strain states can be given in the subsequent shape:

GT = [uo Vo Tro (ex )0 (ey )o (gxy )0 (ex,x )o (ey,x )o (ex,y )0 (ey,y)o:I (16>
According to this equation, the strain interpolation field is written in the below matrix form:
e= B,J (17)
0 00100 X 0 y 0
§q=000010 0 X 0 y (18)
2 2
0 00O 0 1 _M _iy _ix _Mx
G G G G
In addition, the displacement interpolation field is obtained in matrix form as follows:
u=N,q (19)
2 2 2
10_yxozx__(26+/1)y _(G+A)y Xy 0
N, = 2 2 2G 2G (20)
2 2 2
01 x 0 yi 0 Xy _(G+AxT yT (G +A)x
2 2G 2 2G
Inserting nodal coordinates into relation 19 yields the coming result:
D=G,q (21)

In which D denotes the displacement vector. The éq matrix is obtained by placing the nodal coor-

dinates into Nq . It should be mentioned that (_Sq provides a relation between the strain state vector

and the displacement vector. Therefore, the boundary conditions can be applied to the formulation.
In addition, the strain and displacement interpolation fields can be expressed in the succeeding
form:

u=N,.g=N_,.G,".D=N.D (22)

q aq
— —
¢=B,.g=B,.G, .D=B.D (23)
On the other hand, the potential energy function is attained in terms of the elastic matrix (E) as
follows:

H:%IsT.E.sdv—JuT.de (24)
a _y

((B".E.Bdv).D-[N .Fdv=0

By utilizing equation 25, the stiffness matrix can be easily computed. The stiffness matrix (K ) is
also obtained as follows:
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K:jET.EEdv (26)

5 GEOMETRICALLY NONLINEAR FORMULATION

In this study, the geometrically nonlinear formulation is carried out by employing a co-rotational

tactic. In this way, the displacement function corresponding to the rigid motions can be written in
the succeeding shape:

Ugigig = U. +(c0s6, —1)x —(sind,)y

. 27

Viigia = Ve +(siN@)x + (coso, 1)y (27)

In these relationships, ujand v, denote the rigid translations in z and y directions, respectively.

Moreover, the rigid rotation of the coordinates’ origin is shown by q,. By transferring the origin of

the x—y general coordinates to center of the element, the local coordinates will be in hand. This
coordinates will be established in the initial shape and will be unchanged during the deformations.

Having u, ¢«v, andgq,for each element, the rigid body motions will be found by equations 27. By

utilizing relation 13, the deformations causing strains can be calculated with help of the next equali-
ties:
U= (&) X+ () Y2+ (&,,)- X212 + (&xy)- XY+ (Vyy —Eyx)e y°1I2 (28)
V= (). X124 ()Y + (D — 80y ). X124 (8,,). XY + (e,,). Y12
Consequently, displacements of the element can be expressed in the local coordinates system as
follows:

u=u,+ ((e), +cosqg, - Dx + ((gxy)ol 2- sing)y + (exvx)ole 2+

+(8y )XY *+ (Gyyy - eyyx)oy2 [ 2+ ...

vV=v, o+ ((gxy)ol 2+ singy)x + ((ey)O + cosq, - Dy + (gxy’X - exyy)ole 2+
+(8,, )XY *+ (8,,)y° [ 2+ ...

To find the strains, equations 28 can be used. In fact, the strain field similar to relations 14 will be

(29)

obtained. In linear formulation with small strain, g, is tiny, and it can be negligible. As a result,

sing,and cosg are assumed to be equal to (r,),and 1, respectively. In this case, the equalities 29
and 13 will be the same.
According to equations 15, both strain states, (g,,,),and (), can be expressed in terms of other

strain states. By employing these equations, the number of the unknowns will be decreased to 10.
Furthermore, the vector of the strain states can be given in the subsequent shape:

A =lu. v @) ). Oy @) G (). @)] (30)
The strain and displacement interpolation field can be given in the succeeding matrix form:

e= B, (31)

00100 X 0 y 0
B,=/0 0 0 10 0 X 0 y (32)

0 0 0 0 1 _My _iy _ix —MX

G G G G

u= Ngo+u, (33)
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X (2G+Ay? G+’

10x0” Xy 0
010y X 0 Xy _(G+/1)x y__(ZG+/1)x
2 2G 2 2G
(c0s6 —1)x— (sin@) siné.
cosd, —1)x —(sin -y X =X A
= ° o Y|y cosd, |=N, .4, (35)
(cosd —1)y +(sinb)x X y -y L

By inserting the nodal coordinated into equation 33, the vector of nodal displacement can be ob-
tained. According to equations 31 and 33, the interpolation field of the displacements and strains
are written in terms of nodal displacement vector as follows:

D= G,.4+ G4, (36)
q= G, "(D- Gy, (37)
u= Iqu'q *Ug = Nq'(éq_ ~(D- éqq'qq)) * qu'qq (38)
e= B,.q=B,. G "(D- G,a,) =B, G 'D- B, G 1G4, (39)
Assuming K_ = f(éqT .E.éq) dv yields the coming result:
1c 71

U:EIS .E.edv (40)
e’ Ee= E)T. (”%q'T.EiqT .E.I:%Aq. (3q 'D- D'. (?uq'T.IE%qT.E.ABq. (3(1' 1'(?‘*“'% (41)

- 8y Gy G, TB EB,. G D+ q G, G, "B EB. G LG, q,
U=05D".G " K,.G 'D- 05D".G, "E. G, 'G,4, ()

TETEAE-T A -1 TETA-T A -1

- 050, Gy Gy K, G,y "D+ 054, .Gy G, K. G “Gy,4,

Where, U denotes the strain energy. By calculating the derivative of internal strain energy function
with respect to nodal displacements, the internal load vector can be computed as the next form:

_[R] _[eu/eD
e

U| 21y, s 4T, ads 4
{G_D}:Gq ' Ky G, 1'D_Gq ' Ky Gy 1'qu'qa (44)
ouU T A -T -1 ' T A T & -T 2 -1 A A
G, =[cose, —sing. 0] (46)

In equation 43, P, is a vector which includes the first nine entries of the internal load vector and its

tenth entry is incorporated intoP,. At this stage, by taking the derivative of internal load vector,

the tangent stiffness matrix can be written in the coming shape:

{KM Ku} {8P1/8D apl/aea}
K= T = (47)

K, K, oP,/oD oP,/06.
P, 4 -
[a_[ﬂzeq K Gy (48)
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)
op, st A s L |OP
{6—01}—6(4 " K,.G, .G, .G {6—5} (49)
P b G K.G G, G, 6T K GG,
%—— Gy Ky Gy qa-qe+q9 G By Ky Gy qg.qa
. (50)
T A T 2T 21 R
+G, Gy G, K, .G, .Gy, .Gy
G =[-sing, —cosd. 0] (51)

In the last relations, K;,, K, and K,, are 9x9, 9x1 and 1x1 matrices, respectively.

11

6 THE ELEMENT'S DEGREES OF FREEDOM

As previously mentioned, ten nodal unknowns should be identified to formulate the element. The
geometry of the proposed element is shown in Figure 1.

Figure 1: The element degrees of freedom.

In order to calculateéq and éq , the displacement in the direction perpendicular to the side of the

element is expressed in terms of u and v. In Figure 2, this is carried out for one of the element’s side
shown by ij.
(u,), = (u,)sina + (v,,)cosa (52)

Y,v

a
[ g SR ;
T,u

Figure 2: The degree of freedom perpendicular to the ij side.
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7 NUMERICAL TESTS

In the first stage, the proposed element is employed in several linear numerical analyses. The ob-
tained results are compared with the responses of other researchers’ well known elements. In the
most cases, the triangular elements have not been used by other researchers. Therefore, for the sake
of comparison, the responses of famous quadrilateral elements are deployed. Finally, the proposed
element is applied to three geometrically nonlinear tests. In the following paragraphs, the character-
istics of the elements applied in the numerical analysis are introduced:

1. Triangular element with rotational degrees of freedom; FF (a=1.5, 3=0.5) (Bergan and Felippa,
1985).

2. Cook's plane hybrid triangle; CSTHybrid (Cook, 1987; Eom et al., 2009).

3. The modified enhanced assumed strain triangle; MEAS (Yeo and Lee, 1996; Eom et al., 2009).

4. Optimally fabricated assumed natural deviatoric strain triangle; OPT (Felippa, 2003a; Eom et

al., 2009).

5. Allman's triangular element with spurious mode control; Allman (Allman, 1984; Eom et al.,
2009).

6. Allman 88 triangular element integrated by 3-midpoint rule; Allman(3m) (Felippa, 2003a; All-
man, 1984).

7. The triangular Hybrid Trefftz element with rotational degrees of freedom; HTD (Choo et al.,
2006).

8. Retrofitted LST with % =4/3. LST Ret (Felippa, 2003a).

9. Element with internal parameters and formulated by the QACM-I; AGQ6-1I (Chen et al., 2004;
Cen et al., 2009).

10. Stress hybrid element; PS (Pian and Sumihara, 1984; Chen et al., 2004; Cen et al., 2009).

11. Membrane element with drilling degrees of freedom; Q4S (Macneal and Harder, 1988; Cen et al.,
2009).

12. Non—conforming isoparametric element with internal parameters; QM6 (Taylor et al., 1976;
Chen et al., 2004; Choi et al., 2006; Cen et al., 2009).

13. Non—conforming isoparametric element with internal parameters; Q6 (Wilson et al., 1973; Cen
et al., 2007, 2009).

14. Ibrahimbegovic’s plane element with true rotation; IB (Ibrahimgovic et al., 1990; Choi et al.,
2006).

15. The quadrilateral element with two enhanced strain modes; QE2 (Piltner and Taylor, 1995,
1997; Cen et al., 2009).

16. Assumed strain element; B-Q4E (Piltner and Taylor, 1997; Cen et al., 2009).

17. 4node membrane elements with analytical element stiffness matrix; QAC-ATF4 (Cen et al.,
2009).

18. A 4-node quadrilateral element with one-point quadrature integration procedure; Qnew (Fred-
riksson and Ottosen, 2004).

19. Mixed four-node elements based on the Hu-Washizu functional; HW14-S and HW18-SS
(Wisniewski and Turska, 2009)

7.1 Linear tests

In order to gain insight into the effectiveness of the proposed triangular element, seven linear tests,
which are introduced by other researchers, are solved. These problems have formerly been used by
the other researchers for testing a variety of different elements, and their results are available.
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7.1.1 Cantilever beam with five—element irregular mesh

The geometry, loading and meshing of this structure are shown in Figure 3. The elasticity modulus
and Poisson’s ratio are 1500 and 0.25, respectively. All units of the problem are consistence. To
analyze the beam, two load cases are applied: 1- bending moment M, which induces pure bending
2— concentrated force P, which produces linear bending. Under these load cases, the accurate verti-
cal displacements of point A are 100.00 and 102.6, respectively (Cen et al., 2009). As previously
mentioned, SST10 element is deployed to analyze the aforementioned beam. Figures 3.2 and 3.3
show two types of meshing for this structure, and the responses of these cases are calculated. Since
other researchers have not used triangular elements for the analysis of this beam, the responses of
their well-know quadrilateral elements are given, for the sake of comparison. The responses of dif-
ferent elements are listed in Table 1. It is obvious that SST10 element reaches to the exact solutions
when the beam is subjected to the first load case. Under the second load case, the magnitude of
error is approximately 2%. It can be proven that the proposed element is insensitive to geometry
distortion because the responses of meshes A and B are roughly the same.

P=150 P=150
2 2 1 1 4 4
sle sle sle sle
>1e > >1< 1<
M=2000
2
A
A
L | I ! I
1Tt 2 B 3 T 3 P=150
1)
\ e
\ -
v ‘/
(2). Mesh A (3). Mesh B

Figure 3: Cantilever beam with five-element irregular mesh and the triangular meshes.

Element Load M Load P
Q6 98.40 100.40
QM6 96.07 97.98
PS 96.18 98.05
QE-2 96.50 98.26
B-Q4E 96.50 98.26
AGQ6-II 100.0 102.7
QAC-ATF4 100.0 102.4
e Mesh A 100.00 100.58
SO Mesh B 100.00 100.31

Exact (Cen et al., 2009) 100.00 102.60

Table 1: Cantilever beam deflection.
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7.1.2 Cantilever beam with four—element irregular mesh

Four irregular quadrilateral elements are utilized for mesh of the cantilever beam. In addition to
this, the aforesaid beam is meshed in two different ways by using SST10 element, as shown in Fig-
ure 4. The elasticity modulus, Poisson’s ratio and the beam’s thickness are 30000, 0.25 and 1, re-
spectively. Once again, all units of the problem are consistence. The geometry of the structure is
shown in Figure 4.

. 12 . 12 . 12 L 12 .
~ T T T L
T 7 B
7
12 | 7 40
7
/ A
/1
+ 7
/I le sle 1 |
v 16 T4t 81 T 20 !
o’ r ’ f. - \ w
// / // P \\ \ \‘ \‘\
4 O\
../ 4 ‘/ ,,/ \h * \I \
(2). Mesh A (3). Mesn b

Figure 4: Cantilever beam with the irregular quadrilateral element mesh and the triangular meshes.

At the end of the beam, a distributed parabolic shear load is applied. The vertical displacements of
points A and B are listed in Table 2. It should be added that both points’ displacements are equal
to 0.3558 (Cen et al., 2009). This analysis investigates the efficiency of the elements for shear force
displacements in the irregular mesh. The performances of the elements meshed irregularly in shear
deflections are investigated by this test. Obviously, the error of the SST10 element’s answers is ap-
proximately 2%.

Tip deflection

Dl Point A Point B Average
Q4S = = 0.2978
Q6 0.3395 0.3409 0.3402
QM6 0.3264 0.3286 0.3275
AGQ6-II 0.3535 0.3530 0.3533
QAC-ATF4 0.3523 0.3516 0.3520
SST10 Mesh A 0.3474 0.3463 0.3468

Mesh B 0.3484 0.3496 0.3490
Reference value 0.3558
(Cen et al., 2009) ‘

Table 2: Cantilever beam deflection.

7.1.3 Thick curved beam

Figure 5 demonstrates the thick carved beam which is analyzed in this analysis. This structure is
subjected to the shear force loading at the free end. The magnitude of the load is 600. The elasticity
modulus, Poisson’s ratio and the beam’s thickness are 1000, 0 and 1, respectively. As before, con-
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sistence unties are utilized. By employing the suggested triangular element, this structure is meshed,
as shown in Figure 5.2. It is worth emphasizing that other researchers have analyzed this beam by
using quadrilateral elements. They have utilized four elements, as shown in Figure 5.1. The vertical
displacement of point A is presented in Table 3. It should be added that the accurate displacement
of the aforesaid point is 90.1 (Cen et al., 2007). The findings prove that SST10 element performs
much better than well-known quadrilateral elements.

600

I |
0 5 ! (2)
Figure 5: Geometry and loading of the thick curved beam.

T

’ Exact
Element Q6 QM6 PS QAC-ATF4 AGQ6-II SST10 (Cen et al., 2007)

Deflection 87.27 83.61 84.58 90.6 86.90 87.47 90.1

Table 3: Displacement of point A under the shear force applied at the free end.

7.1.4 MacNeal's thin cantilever beam

This test assesses the loss of accuracy produced by utilizing elements shaped as parallelogram or
trapezoid. Figure 6.1 demonstrates the thin cantilever beam with three different meshes, including
rectangular, parallelogram—shaped and trapezoidal meshes. This test is proposed by MacNeal as a
benchmark to evaluate the sensitivity of quadrilateral elements to mesh distortion (Macneal and
Harder, 1985). Herein, this numerical analysis is deployed for SST10 triangular element for meshes
shown in Figure 6.2. Three above-mentioned meshes of Macneal’s beam, and the corresponding
triangular meshes are demonstrated in Figure 6. Note that a big aspect ratio and distortion in par-
allelogram—shaped, trapezoidal and triangular meshes makes the test difficult and reliable for evalu-
ating the efficiency of the elements. It should be added that the elasticity modulus, Poisson’s ratio,
and the beam’s thickness are 10000000, 0.3 and 0.1, respectively. Two loading cases are applied,
pure bending induced by bending moment at the free end and bending caused by unit shear force at
the tip. It should be added that the exact displacements of the tip are respectively 0.0054 and
0.1081, under these load cases (Cen et al., 2009).
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Figure 6: Different meshes of MacNeal's beam.
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Shear force at tip

Element rectangular parallelogram trapezoidal
(Mesh A) (Mesh B) (Mesh C)
Q6 0.993 0.677 0.106
QM6 0.993 0.623 0.044
PS 0.993 0.798 0.221
AGQ6-1I 0.993 0.994 0.994
QAC-ATF4 0.993 0.994 0.994
SST10 0.994 0.949 0.923
Bending moment at free end
Element rectangular parallelogram trapezoidal
(Mesh A) (Mesh B) (Mesh C)
Q6 1.00 0.759 0.093
QM6 1.00 0.722 0.037
PS 1.00 0.852 0.167
AGQ6-11 1.00 1.00 1.00
QAC-ATF4 1.00 1.00 1.00
SST10 1.00 1.00 1.00

Table 4: Normalized deflections at the tip of MacNeal’s beam.

For mesh A, Table 4 indicates that SST10 element performs well when the structure is subjected to
the aforesaid load cases. Furthermore, SST10 has low sensitivity to distortion of both meshes,
namely B and C. On the other hand, other researchers’ elements are generally sensitive to the dis-
tortion of parallelogram—shaped and trapezoidal meshes. For the trapezoidal mesh, the error of re-
sponse increases extensively under the aforementioned load cases.

7.1.5 Cantilever beam with distortion parameter

As it is shown in Figure 7.1, a mesh which includes two quadrilateral elements is used to analyze
this structure. The shape of the two elements varies with a variety of the distorted parameter e. For
e=0, the elements become rectangular. However, with the increase of e, the mesh will be distorted
more and more seriously. This test aims to evaluate the sensitivity of elements to the distortion of
mesh. The elasticity modulus, Poisson’s ratio and the beam’s thickness are 1500, 0.25 and 1, respec-
tively. The beam’s free end is subjected to the bending moment M=2000. For various values of
distortion parameters, the vertical displacement at the tip is presented in Table 5. Note that the
near exact displacement at the tip is equal to 100 (Cen et al., 2009). This structure is analyzed by
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employing the proposed triangular element and the mesh shown in Figure 7.2. The results demon-
strated in Table 5 prove that SST10 element is insensitive to the variations of e.

p——

M=2000

T
\

N
ARLLRNSNNN

T

)

5 ¢ 5

ol
“

(2)

Figure 7: Quadrilateral and triangular mesh of cantilever beam with distortion parameter e.

e 0

Q6 100
QM6 100
PS 100
QE2 100
B-Q4E 100
AGQ6-II 100
QAC-ATF4 100
SST10 100

Exact
{(Cen et al., 2009)

0.5
93.2
80.9

81
81.2
81.2
100
100
100

1
86.9
62.7
62.9
63.4
63.4
100
100
100

2
92.8
54.4

55
56.5
56.5
100
100
100

100

3
102.4
53.6
54.7
57.5
57.5
100
100
100

4
110.5
51.2
53.1
57.9
57.9
100
100
100

4.9
116.6
46.8
49.8
56.9
56.9
100
100
100

Table 5: The displacement of the cantilever beam for various values of e.

7.1.6 Higher order patch test

To carry out this test, a straight simple beam is considered. The length and width of the beam are
10 and 1, respectively. It should be added that the structure is subjected to pure bending. Both
regular and distorted meshes are used in this numerical analysis. The meshes corresponding to the
triangular and quadrilateral elements are shown in Figures 8.2 and 8.3. It should be mentioned that
displacements in z and y directions are denoted by u and wv, respectively. The maximum values of
the displacements are presented in Table 6. Note that the exact response based on beam theory is
obtained (Choi et al., 2006). It is obvious that SST10 element can reach to the good results in both

regular and distorted meshes.

10

”* ™ ™ T ™
1.6667 1.6667 1.6667 1.6667 1.6667 1.6667

i S I I N

(2)

—p P=1
*—p-1

| .—"1.—] .~

-

— .-

()

Figure 8: Meshing and loading of straight beam subjected to pure bending.
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Regular mesh

Element Maximum u  Maximum v
QM6 0.6 1.5 |
1B -0.6 1.5
SST10 -0.6 1.5
Exact (Choi et al., 2006) -0.6 1.5
Distorted mesh
Element Maximum u Maximum v
QM6 —0.554 1.384
1B -0.459 1.124
SST10 -0.6 1.5
Exact (Choi et al., 2006) -0.6 1.5

Table 6: Displacements of the beam subjected to the pure bending.

7.1.7 Cook’s skew beam

This structure was employed to investigate the performance of the quadrilateral elements (Cook et
al., 1989). The beam is shown in Figure 9.1. In this problem, shear displacements govern the behav-
ior, and the distorted quadrilateral elements are deployed for meshing. It should be added that one
end of this beam is clamped, and the other one is subjected to a uniformly distributed shear load

P=1. The elasticity modulus, Poisson’s ratio and the beam’s thickness are 1, % and 1, respective-

ly. Four types of mesh, including 2x2, 4x4, 8x8 and 16x16, are deployed to analyze the aforemen-
tioned beam. Figure 9.2 demonstrates the case in which 2x2 mesh and SST10 element are used for
analysis of Cook’s skew beam. Moreover, the vertical displacement of point C'is indicated in Table
7. For comparison, the results of other researchers’ well-known elements are presented. It is im-
portant to note that the response of GTIMS element, for a 64x64 mesh, is considered as the near
exact answer (Long and Xu, 1994).

P=1
y =
C -----
/ 16 /
- ? -+ "--.__\.- ’/,/‘
4 | 7 44
. } T . -

T

6 ) @)

Figure 9: Geometry and loading of the Cook’s skew beam.
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Element 2x2 4x4 8x8 16x16
Q6 2294 2348 23.80 23.91
QM6 21.05 23.02 = =

PS 21.13 23.02 = =

QE2 21.35 23.04 = 23.88
B-Q4E 21.35 23.04 = 23.88
AGQ6-1I 2592 24.37 24.04 23.97
QAC-ATF4 24.36 23.84 23.89 =

HTD 20.24 22.73 23.55 23.83
FF(a=1.5, $=0.5) 20.36 2242 23.41 23.79
Allman 19.66 22.41 23.44 23.8
MEAS 11.99 18.28 22.02 2341
CSTHybrid 2097 22.76 23.53 23.82
oPT 20.56 22.45 2343 238
SST10 25.82 27.19 27.23 27.09

Reference value

(Long and Xu, 1994) 23.96

Table 7: The displacement of point C'in Cook’s skew beam.
7.2 Nonlinear analyses

To evaluate the performance of proposed formulation, three problems are solved in the following
sections. These tests concentrate on the geometrical nonlinear behavior of structures.

7.2.1 L-shaped plate strip

Figure 10 shows the geometry and loading of the flat L—shaped plate strip. One end of this plate is
clamped, and a uniformly distributed horizontal load is applied to the other end. The elasticity
modulus and Poisson’s ratio are 30000000 and 0.3, respectively. To assess the sensitivity to geomet-
ric distortion, the coarse mesh shown in Figure 10.1 is employed to analyze this structure. It should
be added that the fine mesh consists of 304 square elements is shown in Figure 10.2. The results of
using QM6 and Qnew elements are available for these meshing cases (Battini, 2008b). The load
displacement plots for SS10, QM6 and Qnew elements are illustrated in Figure 11. It is important
to mention that the horizontal displacement of the free end is considered in these plots. With the
fine mesh, the three elements give exactly the same results. According to Figure 11, the SST10 ele-
ment yields a good response even for the poor meshes.

=
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9 1

(1) (2)
Figure 10: Meshing, Geometry and loading of the plate.
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35000 | == QM6 coarse mesh
+ SST10 coarse mesh %jf
30000 1 _Fine mesh jf
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10000
/r

5000

0 1 2 3 4 5 6 7

Horizontal displacement
Figure 11: Nonlinear load displacement plot of the L—shaped plate.

7.2.2 Cantilever beam subjected to shear force at its free end

Figure 12 shows the geometry and loading of the cantilever beam with square cross section
(Khosravi et al., 2007). The structural thickness, elasticity modulus and Poisson’s ratio are 0.1,
20600000 and 0.3, respectively. Four various meshes are utilized to analyze this cantilever beam, as
shown in Figure 12. The load displacement plots for SS10, Allman (3m) and LST-Ret elements are
illustrated in Figures 13, 14 and 15, respectively. It is important to mention that the displacement
of the free end is considered in these plots. According to the results, the responses of SST10 for the
meshes, 2, 3 and 4 are very close to each others, and they have little errors. On the other hand,
Figures 14 and 15 demonstrate comparisons of the SST10 results for mesh 4 with Allman (3m), and
LST-Ret outcomes for meshes 1, 2, 3 and 4. These Figures show the higher efficiencies of the
SST10.
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Figure 13: Nonlinear load displacement plot of the cantilever beam for SST element.
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Figure 14: Nonlinear load displacement plot of the cantilever beam for Allman(3m) element.

6000 ?_
=0=LST-Ret —Meshl ;

=0=LST-Ret —-Mesh2
50001 == LST-Ret —Mesh3 +—
== LST-Ret —-Mesh4
== SST10 —Mesh4

4000

3000

2000

v

e

1000

0 1 2 3 4 5 (] 7 8 9 10

Vertical displacement

Figure 15: Nonlinear load displacement plot of the cantilever beam for LST—-Ret element.
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7.2.3 Thin cantilever beam under in—plane shear

The cantilever beam with the length of 100, width of 1 and thickness of 1 is shown in Figure 16.
The elasticity modulus and the Poisson ratio are equal to 1000000 and 0.3, respectively. This struc-
ture with a force at its free end is a severe test. The test was performed with regular meshes. These
meshes for triangular elements are made of each rectangular mesh unit divided into two—triangular
elements. The 1x100 mesh is employed for analyzing the cantilever beam. The 1x100 mesh shows
that the number of the parts in the z and y directions are equal to 100 and 1, respectively. In this
test, the triangular elements have not been used by other researchers. Therefore, for the sake of
comparison, the responses of famous quadrilateral elements are deployed. In addition, the responses
of finite-rotation for the Timoshenko beam element are utilized (Wisniewski and Turska, 2009).
These are shown in Figures 17.

Y
y 1T
|_|

h=1 p

= 0

L=100

Figure 16: The geometry of the thin cantilever beam under in—plane shear
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Figure 17: Nonlinear load displacement plot of the thin cantilever beam.

The SST10 solution curves for a tip of the cantilever are presented in Figures 17. The answers of
some of the good elements are used in Figures 17.
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8 CONCLUSIONS

In this paper, free formulations along with strain gradient notation were employed to introduce the
optimality conditions into the finite element formulation. By satisfying the equilibrium equations,
the number of nodal unknowns was decreased, and the robustness of the element was increased.
Since triangular elements are suitable for modeling the structures with complex shape, the suggested
scheme is quite useful. By utilizing several linear numerical tests, the high accuracy, rapid conver-
gence, low sensitivity to geometry distortion, rotational invariance and lack of parasitic shear error
were indicated for SST10 element. So far, more quadrilateral elements than triangular ones have
been proposed by investigators. Consequently, the formers have been more widely used in compari-
son studies. Hence, the responses of the well-known quadrilateral elements were presented to
demonstrate the capabilities of the proposed element in these tests. The proposed approach was
without difficulty extended to the geometrically nonlinear structural analysis. In the suggested
technique, the rigid motions were easily identified, and the linear formulations were simply convert-
ed into the nonlinear ones. Finally, simplicity and robustness of the proposed scheme in the geomet-
rical nonlinear analysis of structures were clearly demonstrated numerically.
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