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Abstract 
This study presents an alternative Finite Element formulation 
based on positions to model plane frames considering geometrical 
non-linear and elastoplastic behavior for members and semi-rigid 
connections. The formulation includes shear effects and allows the 
consideration of important mechanical behavior of structures in 
design decisions and verifications. The principle of stationary 
energy is used to find the equilibrium equations. A multi-linear 
elastoplastic constitutive law is developed for both continuum 
members and semi-rigid connections in order to comprise any 
proposed stress-strain diagram. Large rotations and displacements 
are considered for both semi-rigid connections and structure. The 
most important steps used to derive the formulation are described 
along the paper and various examples are used to validate and 
show the possibilities of the proposed technique. 
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FEM, Elastoplastic connections, Laminate cross sections.  
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1 INTRODUCTION 

Computational technology improvements provide a continuous advance in structural analysis, 
resulting in designs of lighter and slender structures. In this sense, the geometrical and physical 
non-linear analysis of structures, including any kind of flexible connection, acquire special im-
portance in engineering analysis. From this reasoning it is necessary to develop a well-posed non 
linear formulation allowing the accurate evaluation of displacements and efforts of conventional 
and unconventional structures. 

Various researches related to geometrical non linear analysis of two and three-dimensional 
frames that consider plasticity can be cited. Some pioneering authors as Shi and Atluri (1988) 
and Argyris et al (1982) applied co-rotational techniques to analyze three-dimensional frames 
developing plasticity. In these works elastoplasticity were treated in a discrete way (plastic hing-
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es), in which a moment-curvature relation is assumed for continuous members cross sections. One 
can cite some recent works that follows the same localized plastic hinge strategy to model the 
behavior of frame elements, are they: Zhou and Chan (2004), Ren et al (1999), Armero and Ehr-
lich (2006), Ehrlich and Armero (2005), White (1993), Chen et al (1996), Landesmann and Batis-
ta (2005), Chan and Zhou (2004) and Ngo-Huu et al (2007). 

Some authors as Alvarenga and Silveira (2009), Avery and Mahendran (2000) and Gruttmann 
et al (2000) use distributed plasticity to model two and three dimensional frames. One advantage 
of distributed plasticity, when compared to plastic hinges, is the better representation of the plas-
tic evolution over cross sections, without the necessity of a previous knowledge of moment-
curvature curves. However, both plastic hinges and the existent distributed plasticity frame mod-
els do not consider the shear stress influence as the finite element proposed in this work. 

Concerning problems in which semi-rigid connections are present one can cite the works of Lui 
and Chen (1988), King (1994), Simões (1996), Chui and Chan (1997), Xu (2001), Sekulovic and 
Salatic (2001), Pinheiro (2003), Kruger et al. (1995) and Chan and Chui (2000). All these works 
use second order geometrical description, which limits the range of applications, i.e., displace-
ments and rotations should not be large. 

In order to implement semi-rigid connections in any computational code it is necessary to use 
results from works that study the experimental behavior of these connection, as, for example, 
Chen and Kishi (1989) and Abdalla and Chen (1995). Some works that, using experimental re-
sults, try to establish empirical mathematical models for connections behavior are also present in 
literature see, for example, the works of Richard and Abbott (1975), Frye and Morris (1975), Ang 
and Morris (1984), Lui and Chen (1986), Lui and Chen (1988), Kishi and Chen (1986a), Kishi 
and Chen (1986b) and Zhu et al. (1995). In our work, as an alternative to these empirical formu-
las, we propose a multi-linear elastoplastic diagram that allows to follow the experimental results 
for semi-rigid connections. Moreover the elastoplastic behavior ensures realistic results for cycling 
loads that are not provided by the non-linear elastic empirical formulas proposed by the previous-
ly mentioned works. 

In the present work an alternative position based Finite Element (FE) formulation (Bonet et 
al., 2000 and Coda and Greco, 2004) is developed to comprise geometrical and physical non-
linearity of both frame members and connections. The formulation, originally developed and pre-
sented in this work, is geometrically exact and, considering the Reissner kinematic hypothesis, 
includes shear stress contribution in both displacement and failure criterion. Based on Botta et al. 
(2008), the developed elastoplastic algorithm is multi-linear with an alternative flow direction 
rule, which allow the reproduction of any stress-strain curve and the determination of closed solu-
tion for the plastic multiplier. Moreover, semi-rigid elastoplastic connections develop large rota-
tions allowing realistic analysis of unload situations for which connections and/or frame elements 
suffers plastic deformations. 

We start the formulation description by defining the Reissner kinematic for laminate frame el-
ements passing through the establishment of the total potential energy including plastic dissipa-
tion for both frame elements and semi-rigid connections. After that, the principle of stationary 
energy is employed to write the equilibrium equations (regarding positions) and the elastoplastic 
evolution is defined. The Newton-Raphson procedure is used to solve the non-linear system of 
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equations and examples are presented to validate the proposed formulation and to show its possi-
bilities. 

 
2 FRAME ELEMENT REISSNER KINEMATICS 

The FE formulation presented here is called positional as it is based on positions, not displace-
ments (Bone et al., 2000 and Coda and Greco, 2004). The main advantage of this total lagrangian 
strategy is the establishment of the gradient deformation without the explicit use of the chain 
rule (Coda and Paccola, 2008, Coda, 2009 and Coda and Paccola, 2010). The chain rule operation 
appears as a simple numerical matrix inversion, which allows the generalization of this procedure 
for any class of non-linear mechanical problem (Coda and Paccola, 2010, Coda and Paccola, 2011, 
Nogueira et. al., 2012, Silva and Coda, 2013 and Pascon and Coda, 2013). 

In this section we present the complete development of the alternative 2D positional Reissner 
kinematics to be used in the proposed finite element formulation. 

 
2.1 Initial configuration 

The positional formulation is based on two mappings, one related to the initial configuration and 
another related to the current configuration. To describe the initial configuration mapping one 
starts with the reference line approximation, see Figure 1, by the following expression: 
 

   foi
m(ξ) = xi

m(ξ) = φℓXiℓ
m  (1) 

 
in which  i  is the coordinate direction (1 or 2),  m  represents the reference line and  ℓ  the element 
node (or shape function). In expression (1) the repetition of index  ℓ  indicates summation (Einstein 
notation). Figure 1 shows 4 nodes (cubic approximation), however any quantity of nodes or approx-
imation order may be chosen.  

 

 
 

Figure 1   Reference line parameterization for initial configuration (cubic approximation) 
 
In Figure 1   f0

m(ξ)  is the mapping from the non-dimensional variable ξ  to the reference line. 
A similar mapping from the non-dimensional variable to the current reference line will be given in 
the next item.  
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We start to build the initial configuration of the frame element writing an approximation for 
the normal vector, Figure 2, using the known initial reference line mapping, as follows: 

  

 
 

Figure 2   Nodal normal vectors 
 
The tangent vector at any point of the reference line can be written, particularly at nodes, by: 
  

   
Tik =

dφℓ(ξ)
dξ

ξk

Xiℓ
m  (2) 

 
in which  ξk  is non-dimensional coordinate of node  k  and  Tik  is the  ith  component of the tangent 
vector at node  k . 

As a consequence, if the coordinates of reference line nodes are known, the tangent vectors at 
nodes are also known and the normal vectors can by calculated as: 

 

  
V1k = −T2k / Ti(k )Ti(k )  (3) 

 

  
V2k = T1k / Ti(k )Ti(k )  (4) 

 
in which index inside brackets does not mean summation, that is:  
 

  
Ti(k )Ti(k ) = (T1(k ) )

2 + (T2(k ) )
2  (5) 

 
For the present positional formulation it is important to write the nodal angle  θk  that the 

normal vector  Vik  makes with the horizontal direction (  x1  axis), see Figure 2, as: 
 

  
θk

0 = arctg(V2(k ) / V1(k ) )  (6) 
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Knowing the nodal angles we use the same shape functions to approximate  θ
0 (ξ)  along the 

initial configuration: 
 

  θ
0 (ξ) = φℓ(ξ)θℓ

0  (7) 
 
Observing Figure 3 one can find any point inside the continuum (frame) adding the normal 

vector   gi
0(ξ,η)  to a point of the reference line, as: 

 

  xi(ξ,η) = xi
m(ξ)+ gi

0(ξ,η)  (8) 
 

in which η  is the second non-dimensional variable used to build the 2D frame element. 
 

 
 

Figure 3   Point  P  at a general cross section of the initial element configuration 
 

Moreover, vector   gi
0(ξ,η)  generates cross sections with (in this paper) constant height   h0 . 

The width is also considered constant (  b0 ) along the bar length, however it can vary along trans-
verse direction to compose general cross sections. This transverse variation is opportunely intro-
duced. 

From Figure 3 it is established that the initial cross section is orthogonal to the reference line, 
so vector   gi

0(ξ,η)  can be written as a function of  θ
0 (ξ) , as follows: 

 

   
g1

0(ξ,η) =
h0

2
ηcos(φℓ(ξ)θℓ

0 )  (9) 
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Substituting equations (9), (10) and (1) into (8) results the complete mapping from  (ξ ,η )  to 
the initial configuration of a frame element, as: 

 

   
f01(ξ,η) = x1(ξ,η) = φℓX1ℓ

m +
h0

2
ηcos(φℓ(ξ)θℓ

0 )  (11) 

 

   
f02(ξ,η) == x2(ξ,η) = φℓX2ℓ

m +
h0

2
ηsen(φℓ(ξ)θℓ

0 )  (12) 

 
2.2 Current configuration: 

The necessary information to build the initial configuration comprises the reference line nodal coor-
dinates, the height and the width of the cross section. The current configuration is achieved by a 
non-linear process that uses a trial position to start the solution procedure. So, we do not worry at 
this moment about the solution process and writes the current configuration similarly to the initial 
one, that is: 
 

   
f11(ξ,η) = y1(ξ,η) = φℓY1ℓ

m +
h0

2
ηcos(φℓ(ξ)θℓ )  (13) 

 

   
f12(ξ,η) = y2(ξ,η) = φℓY2ℓ

m +
h0

2
ηsen(φℓ(ξ)θℓ )  (14) 

 
For which iy  are the current coordinates of a general point inside the frame element,   Yiℓ

m  are 

current nodal coordinates and  θℓ  are the current angles of cross sections, see Figure 4. 
 

 
 

Figure 4   Current configuration mapping – detaching angles 
 

 One can see from Figure 4 and from equations (13) and (14) that cross sections remain straight, 
but no more orthogonal to the reference line. This is the general Reissner kinematics. Moreover we 
kept   h0  and   b0  unchanged limiting our constitutive relation to accept any shear elastic modulus, 
but null Poisson ratio. 
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2.3 Change of configuration function (deformation) and its gradient: 

Being defined mappings to initial and current configurations, we start the description of the change 
of configuration of the analyzed body (frame). This is done by joining the two mappings of Figures 
3 and 4 in a single representation, see Figure 5, for which the function   

!
f  describes the change of 

configuration from initial configuration  (  B0 ) to the current one ( B ). From basic knowledge of 

calculus   
!
f  is written as a composition of mappings    

!
f0  and    

!
f1  as: 

 

   
!
f =
!
f1 " (
!
f0 )−1  (15) 

 
and the gradient of   

!
f , called here  A  (a 2x2 tensor) is written from the gradient of  

   
!
f0  and    

!
f1  as: 

 

  A = A1 ⋅(A0 )−1  (16) 
 

 
 

Figure 5 – Change of configuration – Positional mapping 
 
In index notation one writes 
 

 
Aij = Aik Djk  (17) 

 
in which  

Dkj  is the inverse of 
  
Akj

0 . 

 These gradients are written in an open form as: 
 

  

Aij
0 =

∂ f1
0

∂ξ
∂ f1

0

∂η
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0

∂ξ
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0

∂η

⎡
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⎢

⎤

⎦

⎥
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⎥
⎥
⎥

=

∂x1

∂ξ
∂x1
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∂x2

∂ξ
∂x2

∂η

⎡
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⎤
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Aij
1 =

∂ f1
1

∂ξ
∂ f1

1

∂η

∂ f2
1

∂ξ
∂ f2

1

∂η

⎡

⎣

⎢
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⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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⎥

=

∂y1

∂ξ
∂y1

∂η

∂y2

∂ξ
∂y2

∂η

⎡

⎣

⎢
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⎢

⎤

⎦
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 (19) 

 
 Elements of 

  
Aij

0  and 
  
Aij

1  are calculated directly from expressions (11), (12), (13) and (14) for 

known values (integration points) of ξ  and η , as: 
 

   
A11

0 =
∂x1

∂ξ
= φℓ,ξ(ξ)X1ℓ

m −
h0

2
ηsen(φℓ(ξ)θℓ

0 )φk ,ξ(ξ)θk
0  (20) 

 

   
A12

0 =
∂x1

∂η
=

h0

2
cos(φℓ(ξ)θℓ

0 )  (21) 

 

   
A21

0 =
∂x2

∂ξ
= φℓ,ξ(ξ)X2ℓ

m +
h0

2
ηcos(φℓ(ξ)θℓ

0 )φk ,ξ(ξ)θk
0  (22) 

 

   
A22

0 =
∂x2

∂η
=

h0

2
sen(φℓ(ξ)θℓ

0 )  (23) 

 

   
A11

1 =
∂y1

∂ξ
= φℓ,ξ(ξ)Y1ℓ

m −
h0

2
ηsen(φℓ(ξ)θℓ )φk ,ξ(ξ)θk  (24) 

 

   
A12

1 =
∂y1

∂η
=

h0

2
cos(φℓ(ξ)θℓ )  (25) 

 

   
A21

1 =
∂y2

∂ξ
= φℓ,ξ(ξ)Y2ℓ

m +
h0

2
ηcos(φℓ(ξ)θℓ )φk ,ξ(ξ)θk  (26) 

 

   
A22

1 =
∂y2

∂η
=

h0

2
sen(φℓ(ξ)θℓ )  (27) 
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 The objective Green-Lagrange strain measure  E  is chosen to develop the geometrically exact 
FEM, that is: 
 

   
E = 1

2
(C− I) = 1

2
(AtA − I)  or 

  
Eij =

1
2

( Aki Akj −δ ij )  (28) 

 
where  I  is the second order identity tensor and  C  is the right Cauchy stretch.  
 In order to introduce lamina with different widths and material properties, one should simply 
change expressions (11), (12), (13) and (14) by: 
 

   
x1(ξ,η) = φℓX1ℓ

m + dlam +
h0

lam

2
η

⎛

⎝⎜
⎞

⎠⎟
cos(φℓ(ξ)θℓ

0 )  (29) 

 
 

   
x2(ξ,η) = φℓX2ℓ

m + dlam +
h0

lam

2
η

⎛

⎝⎜
⎞

⎠⎟
sen(φℓ(ξ)θℓ

0 )  (30) 

 

   
y1(ξ,η) = φℓY1ℓ

m + dlam +
h0

lam

2
η

⎛

⎝⎜
⎞

⎠⎟
cos(φℓ(ξ)θℓ )  (31) 

 

   
y2(ξ,η) = φℓY2ℓ

m + dlam +
h0

lam

2
η

⎛

⎝⎜
⎞

⎠⎟
sen(φℓ(ξ)θℓ )  (32) 

 
in which  dlam  is the distance between the reference line and the concerned lamina following the 

positive sense of the vector defined by θ , see Figure 3. It is worth noting that   h0
lam  is the height of 

each lamina. Moreover, it is necessary to indicate the width  blam  and the physical properties of each 
lamina at an integration point for which the constitutive model and the deformation gradient are 
required. 
 It is important to stress that distortion effects are naturally considered resulting in a general 
Reissner-Mindlin kinematics. 
 
3 ELASTIC PROCEDURE 

In this section, the elastic Saint-Venant-Kirchhoff constitutive relation is adopted to relate the se-
cond Piola-Kirchhoff stress  S  and the Green strain  E  for frame elements. Moreover, semi-rigid 
linear elastic connections are introduced to make a preliminary development of the complete non-
linear solution technique to be shown in the next section.  
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3.1 Elastic connections: 

In order to unify the notation, the degree of freedom  θℓ  will be called    Y3ℓ . Each element node has 
three degrees of freedom, but when connecting elements by means of semi-rigid connections (global 
numbering) an extremity node may have more than three degrees of freedom, as the rotations of 
the connected elements are not the same. Figure 6 shows three cases to illustrate the linking by 
means of free connections (joints).  
 

 
 

Figure 6   Some free connections and degrees of freedom numbering. 
 
 Following Figure 6 one observes that the master element defines the first rotation degree of free-
dom (the third of the node) and each slave element introduces an extra degree of freedom for the 
connection node. Figure 7 shows the introduction of elastic connections in the structures of Figure 
6.  
 

 
 

Figure 7   Some semi-rigid connections 
  
In general, the strain energy stored in a semi-rigid connection with stiffness modulus ( )k ηαβ  at a 
global node η  - that is the initial (or final) node of a frame element α  and the final (or initial) 
node of a frame element β  - is given by: 
 

  
Uη

SR = k(ηαβ )

2
θα

η −θβ
η( )2

= k(ηαβ )

2
Y3α

η −Y3β
η( )2

 (33) 

 
No summation implied. 
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3.2 Frame element strain energy: 

As mentioned before the specific strain energy to be adopted here is the Saint-Venant-Kirchhoff 
one, that relates the Green strain ( E ) and the second Piola-Kirchhoff stress ( S ) in a linear way 
as: 
 

  
ue =

E
2

E11
2 + E22

2( ) +G E12
2 + E21

2( )  or 
    
ue =

1
2

E :C : E  (34) 

 
in which   G = E / 2(1+ν )⎡⎣ ⎤⎦  is the shear elastic modulus, ν  is the Poisson ration and  

Eij  is the 

Green strain tensor. Alternatively, in dyadic notation,  E  is the Green strain tensor and  C  is the 
elastic constitutive tensor. As the Green strain has been written as a function of nodal positions, see 
equations (16) through (28), the strain energy stored in the bar elements is written as: 
 

   
Ue(
!
Y )= ue dV0V0

∫  (35) 

 
in which   V0  is the initial volume of the analyzed structural bar elements (Coda and Greco, 2004 
and Coda, 2009). 
 
3.3 Total potential energy: 

In order to write the total potential energy of the mechanical system   Π (
!
Y )  (conservative and 

isothermal) one sums the strain energy of frame elements, the strain energy of semi-rigid connec-
tions, the potential energy of external loads (and moments) and the potential energy of external 
distributed forces, resulting: 
 

   
Π (
!
Y )= ue(

!
Y )dV0V0

∫ +Ue
SR −
!
F ⋅
!
Y − !q ⋅ !ym(

!
Y )

S0
∫ dS0  (36) 

 
in which   

!
F  is the external nodal force vector (including moments) and   

!q  is the general distributed 
force vector written as function of nodal values, by: 
 

  qi = φℓ(ξ )Qℓi  (37) 
 
In equation (36),   

!ym(
!
Y )  is the current position at the reference line of frame elements, written as 

function of nodal positions   
!
Y  (see equations (13) and (14)) and   dS0  is the infinitesimal length of 

the curved frame element. 
 In order to find the equilibrium configuration one applies the principium of stationary potential 
energy on equation (36), using as parameters the nodal positions, 
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δΠ =

∂ue

∂E
: ∂E
∂
!
Y

dV0 ⋅δ
!
Y

V0
∫ +

∂Ue
SR

∂
!
Y

⋅δ
!
Y −
!
F ⋅δ
!
Y − !q ⋅ ∂

!ym

∂
!
YS0

∫ dS0 ⋅δ
!
Y =
!
0  (38) 

 
By the energy conjugate principle (Ogden, 1984), the first term of the first integral of equation 

(38) is the second Piola-Kirchhoff stress. Using the same principle, the derivative of the strain ener-
gy stored in elastic connections is the internal moment   

!
M int . Therefore, in order to simplify the 

understanding of the physical non-linear procedure, shown in next section, one rewrites equation 
(38) as: 

 

    
δΠ = S : ∂E

∂
!
Y

dV0 ⋅δ
!
Y +

V0
∫

!
M int ⋅δ

!
Y −
!
F ⋅δ
!
Y − !q ⋅ ∂

!ym

∂
!
YS0

∫ dS0 ⋅δ
!
Y =
!
0  (39) 

 
The understanding of equation (39) can be further improved defining the first integral as the in-

ternal nodal force and the last integral as the equivalent nodal force of applied distributed forces 
(Coda, 2009b), resulting: 

 

    δΠ =
!
F int ⋅δ

!
Y +
!

M int ⋅δ
!
Y −
!
F ⋅δ
!
Y −L ⋅

!
Q ⋅δ
!
Y =
!
0  (40) 

 
in which  L  is the matrix that transforms the distributed forces into nodal equivalent ones. Due to 
the arbitrariness of   δ

!
Y  equation (40) results into the geometrical non-linear equilibrium equation, 

as: 
 

    
!
F int +

!
M int −

!
F −L ⋅

!
Q =
!
0  (41) 

 
The Newton-Raphson procedure is used to solve the non-linear equilibrium. This procedure is 

described in the next section, including the physical non-linear behavior of materials. To close this 
item we show the pair of internal moments, for an elastic semi-rigid connection, associated to a 
global node η  related to the initial (or final) point of a frame element α  and to the final (or ini-
tial) point of a frame element β , that is: 
 

  
M3α

η = k(ηαβ ) Y3α
η −Y3β

η( )  and 
  
M3β

η = −k(ηαβ ) Y3α
η −Y3β

η( )  (42) 

 
4 INELASTIC PROCEDURE 

4.1 Equil ibrium equation 

The difference between the elastic and inelastic procedures is the way the potential energy of exter-
nal forces is transferred to the deformed body and dissipated during the loading process. In this 
case, instead of using the elastic strain energy, both for the frame element and connections, one uses 
the Helmholtz free energy potential (Lanczos, 1970).  
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 Following this reasoning the total potential energy for isothermal problems is written as: 
 

   
Π (
!
Y )= Ψ ( E,α )dV0V0

∫ +Θ SR Y3α
η −Y3β

η( ) ,α( )− !F ⋅
!
Y − !q ⋅ !ym(

!
Y )

S0
∫ dS0  (43) 

 
where Ψ  and  Θ

SR  are, respectively, the free energy potentials of the continuous (frame elements) 
and connection. These potentials are written as function of the Green strain tensor, the relative 
angle positions at connections and the thermodynamic parameters α  and α . 
 The variation of the total potential energy is null at the equilibrium position, i.e.: 
 

    
δΠ = ∂Ψ

∂E
:
∂E
∂
!
Y

dV0 ⋅δ
!
Y

V0
∫ +

∂Θ molas

∂
!
Y

⋅δ
!
Y −
!
F ⋅δ
!
Y − !

q ⋅ ∂
!
ym

∂
!
YS0

∫ dS0 ⋅δ
!
Y = 0  (44) 

 
in which parameters α  and α  are not present due to their intrinsic relation with  E  and  S  to be 
shown in item 4.2. 
 Even for inelastic problems, the derivative of the free energy potential regarding Green strain is 
the second Piola-Kirchhoff stress tensor. For the same reason, the energy conjugate of the free ener-
gy at elastoplastic connections regarding relative angles are internal moments. In this way, equation 
(44) can be written exactly as equation (39). However, with a physical non-linear meaning, i.e., 
while the passage from equation (38) to equation (39) is done by a simple differentiation of the 
quadratic potential shown by equations (31) and (33), now it is necessary to define an inelastic 
(plastic for instance) constitutive relation to describe the material behavior and its evolution rule. 
 
4.2 Elastoplastic constitutive relation 

In this section, we summarize the constitutive elastoplastic relation developed by Botta et al. (2008) 
and Rigobello et al. (2013). We follow a general 3D description in order to adequate the constitutive 
relation to any finite element kinematic, avoiding volumetric locking. A brief description of the 
main equations is given for both frame and connections. 

 
4.2.1 Frame element 

Although the developed displacements are high, the strain level present in our applications is small. 
Therefore, the Green strain approximates the linear strain and the second Piola-Kirchhoff stress can 
be used in place of the Cauchy stress. Following this reasoning we adopt the additive strain decom-
position, as:  
 

  E = E e + E p  or   E e = E - E p  (45) 
 
in which   E e  and   E p  are, respectively, the elastic and plastic parts of  E . Therefore, the free ener-
gy potential can be written as: 
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Ψ ( E − E p ,α )= 1

2
E e :C : E e + 1

2
hα 2  (46) 

 
where  C  is the elastic constitutive tensor and h  is the isotropic hardening parameter.  

The second Piola-Kirchhoff stress and the thermodynamic force χ  are written as: 
 

   
S = ∂Ψ

∂E
=C : E e =C : E − E p( )  (47) 

 

 
χ = − ∂Ψ

∂α
= −hα  (48) 

 
As mentioned after equation (44), in order to eliminate α  from equilibrium equation it is neces-

sary to relate  E p  and α . In classical formulations this is done introducing a plastic potential 

  F S ,χ( )  (Simo and Hughes, 1998) for which the plastic flow is given by: 

 

   
!E p = !λ ∂F

∂S
 and   

  
!α = !λ ∂F

∂χ
 (49) 

 
or in infinitesimal notation: 
 

  
dE p = dλ ∂F

∂S
    and  

 
dα = dλ ∂F

∂χ
 (50) 

 
where λ  is the plastic multiplier. In the adopted formulation (Botta et al., 2008 and Rigobello et 
al., 2013) equations (48) and (50) are replaced by α = −λ  and: 
 

  dE p = η dλ  and    dχ = hdλ  (51) 
 
for which, 
 

    
η = Dp : S = G

J2

S
2G

+
tr S( )
9k p I

⎛

⎝
⎜

⎞

⎠
⎟  and  

   
Dp = G

J2

C p( )−1
 (52) 

 
in which 

   J2 = 1 / 2 S : S t⎡⎣ ⎤⎦  is the second invariant of the deviatory stress  S  and   C
p  is an elastic 

constitutive tensor, similar to  C  changing the ν  by  ν
p . Moreover 

  
k p = E / 3 1− 2ν p( )⎡

⎣
⎤
⎦  is the 

elastoplastic bulk modulus. Following this strategy, when   ν
p ≅ 0.5  isochoric plasticity takes place 
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and when  ν = ν p  the plastic flow occurs in the same direction of elastic flow. In this work we adopt 

  C
p =C , defined by the second derivative of expression (34) regarding strain. This choice releases 

any possible locking related to Reissner kinematic. 
To complete the elastoplastic procedure one defines the yielding failure expression as: 
 

  
f = J2 − χ − Sy  (53) 

 
in which 3y yS /σ=  is the initial size of the Von-Mises surface ( 0f = ) with yσ  being the 

yielding uniaxial stress. 
It is important to know that the plastic multiplier should satisfy the Khun-Tucker conditions, 

related to the yielding surface (53), i.e.: 
 

  dλ ≥ 0 ,   f ≤ 0 ,   dλ f = 0  (54) 
 

which means that if   f ≤ 0  then   dλ = 0  and no plastic evolution occurs and if, for some situation, 
one finds   f > 0  then   dλ ≥ 0  should be achieved in order to guaranty the equality   f = 0 . 

In terms of incremental solution we assume constant by parts hardening ( h ) and a typical in-
terval   tn ,tn+1⎡⎣ ⎤⎦  for which  n  is a previous (solved) step and   n+1  is the current step. Therefore, 

one writes: 
 

   
t E n+1( )     →  Elastic trial of the total strain 

   
t E n+1( )

p = En
p    →  Accumulated plastic strain (assumed as trial) 

  
tλ n+1( ) = λn     →  Internal variable trial 

  
tχ n+1( ) = χn    →  Thermodynamic internal force trial 

 
Using these variables we calculate the stress level considering   ΔE p  (instead of   dE p ) as the 

main unknown, as follows 
 

    
S n+1( ) =C : t E n+1( ) −

t En
p − ΔE p( ) = tS n+1( ) −C : ΔE p  (55) 

 
where the trial stress   tS  is known. Using this value we calculate the trial yielding expression: 
 

  
t f n+1( ) =

t J2 −
tχ − Sy  (56) 
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If 
  
t f n+1( ) ≤ 0  the step is elastic and the trial variables are the correct ones. However, if 

  
t f n+1( ) > 0  

then the step is elastoplastic and 
  
f n+1( )  should assume zero, resulting:  

 

  
Δλ = t f

n+1( ) / G + H( )  (57) 

 
Finally, using equations (51) and (52), the searched plastic strain is found as, 
 

    

ΔE P =
t f

n+1( )
G + H( )

tS
n+1( )

2 t J2 n+1( )
+

Gtr tS( )
9k P t J2 n+1( )

I
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 (58) 

 
Moreover, the elastoplastic constitutive tensor is written as (Rigobello et al., 2013): 
 

     
Cep = ∂S

∂E
= ∂2Ψ
∂E∂E

= C - C :η⊗ tS :C
t S :C :η + 2 J2 H

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=C−C p  (59) 

 
4.2.2 Elastoplastic model for the semi-rigid connections 

In this item the previous general elastoplastic procedure (multi-linear) is simplified to accomplish 
the semi-rigid connection. Firstly, the notation of equations (33) and (42) is changed to: 
 

  
R3αβ

η = Y3α
η −Y3β

η( )  (60) 

 
where 

  
R3αβ

η  is the relative rotation between frame bars α  and β  at a connection node η . From 

now on, to simplify the developments, this relative rotation will be called simply  R . This variable 
is clearly one-dimensional and is separated into elastic and plastic parts, as: 
 

 R = Re + R p  or    Re = R − R p  (61) 
 

The free Helmholtz energy potential, implicit in equation (43), is written as:  
 

  
ΘSR( R − R p ,α )= 1

2
k( Re )2 + 1

2
hα 2  (62) 

 
where  k  is the elastic stiffness of the connection and  h  its hardening. Using the work of Botta et 
al. (2008) and Rigobello et al. (2013) and following the previous item one writes the internal mo-
ment and the thermodynamic force related to the internal variable α  as: 
 



H. B. Coda et al. / Physical and geometrical analysis of plane frames considering elastoplastic semi-rigid connections by the positional FEM     1179 

Latin American Journal of Solids and Structures 11 (2014) 1163-1189 

 

 
M = ∂ΘSR

∂R
= kRe = k( R − R p )  (63) 

 

 
χ = − ∂θ

∂α
= −hα  (64) 

 
In the case of semi-rigid connections, the elastic limiting moment   

M y > 0  is used to write the 

failure expression as: 
 

  
f = M − M y − χ ≤ 0    or  

  
f = M − M y + hα ≤ 0  (65) 

 
in which isotropic hardening is adopted. 

Following the steps described in the previous item, one achieves: 
 

 
ΔR p = sign( M ).

t f
k + h

 (66) 

 
in which sign  represents signal. Moreover the tangent modulus results: 
 

2

2

SR

t
k.hk

R k h
∂ Θ= =
∂ +

 (67) 

 
5 Newton-Raphson procedure 

Knowing the elastoplastic constitutive models, one starts the solution process rewriting the equilib-
rium equation (44) as: 
 

    
!g(
!
Y )= ∂Ψ

∂E
: ∂E
∂
!
Y

dV0V0
∫ +

∂Θ SR

∂
!
Y

−
!
F − !q ⋅ ∂

!ym

∂
!
YS0

∫ dS0 =
!
0  (68) 

 
Remembering that the process is nonlinear, equation (68) is expanded in Taylor series from a 

trial position    
!
Y0 , i.e.: 

 

   

!g(
!
Y )≅ !g(

!
Y0 )+ ∂ !g

∂
!
Y !

Y0

Δ
!
Y =
!
0  (69) 

 
Solving the linear system of equation (69) one finds the position correction   Δ

!
Y , applied as 

  
!
Y =
!
Y + Δ

!
Y  until 

  
Δ
!
Y /

!
X < tol , in which  tol  is the tolerance in positions and   

!
X  is the initial 
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nodal positions of the body. As the applied forces are conservative the derivative of   
!g  regarding 

positions results: 
 

    

∂ !g
∂
!
Y
= ∂E

∂
!
Y

: ∂2Ψ
∂E∂E

: ∂E
∂
!
Y
+ S : ∂2E

∂
!
Y ∂
!
Y

⎛
⎝⎜

⎞
⎠⎟
+ ∂2Θ
∂
!
Y ∂
!
Y

 (70) 

 
or, using equations (59) and (67), 
 

     

∂ !g
∂
!
Y
= ∂E

∂
!
Y

:C ep : ∂E
∂
!
Y
+ S : ∂2E

∂
!
Y ∂
!
Y

⎛
⎝⎜

⎞
⎠⎟
+ Kt  (71) 

 
The derivatives of the Green strain regarding positions are straightforward and left to the read-

er. 
 
6 EXAMPLES 

6.1 Elastoplastic connection of two bars 

This example is used to confirm the computational implementation of the elastoplastic connection, 
to demonstrate the geometrically exact description of the proposed total Lagrangian frame formula-
tion and to describe the difference of non-linear elastic and elastoplastic connection models. 

A clamped bar is divided into two equal elastic parts linked by an elastoplastic connection, as 
seen in Figure 8.  

 

	  
	  

	  

  

E = 21000kN / cm2

ν = 0.0
	  

 

 
Figure 8   Clamped bar connected by an elastoplastic connection 

	  
The cross section and the elastic properties of the bar are also depicted in Figure 8. Two finite 

elements of cubic approximation order have been used and the load is divided into 30 steps. Figure 
9a shows the moment versus rotation graphic comparing the numerical result with the analytical 
curve for a monotonically crescent load. The initial elastic modulus of the connection is 
  k = 12kN .cm  with elastic limit   

M y = 3kN .cm . Figure 9b shows the connection behavior when 

subjected to a cyclic loading. 
As one can see in Figure 9 the formulation models perfectly the elastoplastic connection behav-

ior; highlighting that the multi-linear strategy is capable of accurately reproduce any elastoplastic 
curve. It is important to mention that if one uses a non-linear elastic model, as the ones adopted, 
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for example, by Pinheiro and Silveira (2005) and Chan and Chui (2000), the loading situation (Fig-
ure 9a) will present the same result as the analytical solution; however their models are unable to 
reproduce the real unloading or cycling situation (Figure 9b), that is, in their formulation no plastic 
evolution takes place and the unloading follows the same curve as loading, which results into no 
plastic residuals at a new resting position. 

 

	  
	  

(a) Monotonic loading (b) Cycling loading 
 

Figure 9   Connection moment x rotation graphics – a) Monotonic, b) Cyclic. 
 

Figure 10 shows partial positions for 15 equally spaced loading levels demonstrating that the 
non-linear geometric description is exact. This level of rotation is not accomplished by formulations 
that adopt second order geometrical descriptions. 

 

 
 

Figure 10   Partial positions for equally spaced loads 
 

6.2 Four point test 

A simple supported beam, subjected to a monotonically crescent controlled displacement at load 
positions, see Figure 11, is analyzed. The cross section is also presented in Figure 11, for which 
three lamina are employed to perform the Gauss integration procedure. Five Gauss integration 
points are adopted for each lamina. Two different materials are employed for comparisons, one is  
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perfect elastoplastic and the other presents softening, see Figure 12a.  
 

	  
Figure 11   Simple supported beam - loading and cross section 

	  

	   	  
(a) Stress-strain relation (b) Load versus displacement 

 
Figure 12   Curves: stress x strain and force x displacement (under the load) 

	  
Figure 12b shows the beam behavior for both materials. Results are compared to the elastic limit 

load and the ultimate load for perfect elastoplasticity. Position control is sufficient to model the 
post critical behavior of this example. Three cubic elements (without considering symmetry) are 
used to model this case. 

	  

	   	  
(a) Perfect elastoplastic (b) Softening 

 
Figure 13   Bending moments diagrams for various load levels 

	  
Figure 13 shows the evolution of bending moments for different load levels. One can observe that 

for the perfect elastoplastic case the degradation spread over the beam; moreover the load stabilizes 
after the displacement of 7cm. For the material that presents softening, after the imposed displace-
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ment of 2.2cm a reduction in the load level occurs for crescent imposed displacements and, conse-
quently, in the bending moment. Moreover, no bending moment spreads over the beam. 
	  
6.3 Elastoplastic column 

This example illustrates the application of the proposed formulation to the eccentric compression of 
the column depicted in Figure 14a. The material properties are:   E = 21000kN / cm2 ,   ν = 0.0  and 

  
σ y = 21kN / cm2  with perfect elastoplasticity. Figure 14b shows the results obtained using the 

proposed formulation (geometrically exact) for the elastic and elastoplastic cases. These solutions 
are compared to the elastic closed second order analytical solution (secant formulae). We adopt six 
cubic finite elements to run this example, four along the column and two for the small consoles at 
extremities. Position control is employed and, to impose symmetry, the rotation of the central node 
is restricted. 
 

 

 

 
 

(a) Geometry 
 

(b) Load versus central displacement 
 

Figure 14   Eccentric column and results. 
	  

This example confirms that the elastic second order theory gives a more flexible result than the 
elastic geometrically exact one. The plastic flow starts at the load level of   13kN ,   16%  less than 
the column critical load (  15.545kN ). The elastic release starts at the load level   3.773kN  and the 
residual displacement, at the new unloaded situation, is about   30cm . 
	  
6.4 Frame analysis subjected to concentrated loads - Elastoplastic connection 

In this example the frames depicted in Figure 15 are analyzed considering elastoplastic connections. 
The original data of this problem are given by Pinheiro and Silveira (2005) and Chan and Chui 
(2000). In these works the connection model does not consider plasticity, the geometry follows the 
second order approximation and the kinematic does not include shear effects. To simplify compari-
sons, we adopt elastic bars with   E = 21000kN / cm2  and   ν = 0.0 . 

The adopted multi-linear connection diagrams, shown in Figure 16, are extracted from Pinheiro 
and Silveira (2005). The elastic limits of the connections for the four tested cases are: 

0 10 20 30 40 50 60 70 80 90 100 110 120
0

5

10

15

20

25

30

35

40

45

50

55

Lo
ad

	  (
kN

)

L a tera l	  dis pla cement	  (cm)

	  G eometrica ly	  E xac t
	  Ana litic 	  s econd	  order
	  P erfec t	  e la s topla s tic



1184      H. B. Coda et al./Physical and geometrical analysis of plane frames considering elastoplastic semi-rigid connections by the positional FEM 

Latin American Journal of Solids and Structures 11 (2014) 1163-1189 
 

  
M y

A = 750kN .cm , 
  
M y

B = 1625kN .cm , 
  
M y

C = 5000kN .cm  and 
  
M y

D = 20480kN .cm  with their 

corresponding rotations 
  
θ y

A = 1.67x10−3 rad , 
  
θ y

B = 1.67x10−3 rad , 
  
θ y

C = 5.00x10−3 rad  and 

  
θ y

D = 6.67x10−3 rad . More data information can be seen in Pinheiro and Silveira (2005). 

Beams are constituted of steel wide flange shaped section   W14x48  while columns are constitut-
ed of   W12x96  section. It is interesting to note that bars behave elastically because the ultimate 
limit of the strongest connection (case D) is practically equal to the elastic limit of beams, and loads 
are applied at connections. 

The load  P  (Figure 15) grows monotonically until the critical load shows up. Figures 17 and 18 
show that the results presented by our formulation agree with the ones given by references. For 
semi-rigid connections the differences in results are less the 2% for all cases. For rigid connection 
the difference is about 6%, explained by the difference among the exact geometrical description and 
second order approximation.  

 

	  
a) Clamped                                   b) Simple supported  

 
Figure 15   Analized frames, adapted from Pinheiro and Silveira (2005) 

	  

	  
Figure 16   Connections bending moment x rotation diagrams 
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Figure 17   Simple supported structure behavior 

	  
 

Figure 18   Clamped structure behavior 
	  

For connections A and B the displacement levels are very small and failure occurs in an abrupt 
way. In order to show up the horizontal plateau (for A and B), Figures 17 and 18, we used lateral 
loads of   0.0015P  and   0.003P  instead of   0.001P  and   0.002P . However, this procedure does not 
change the critical load value.  
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6.5 Frame analysis subjected to distributed loads - Elastoplastic connection 

A change in the last example is introduced in order to compare the structure behavior when the 
same load is applied distributed along beams or concentrated at connections. As the analysis in-
cludes an unload situation it cannot be done using formulations that consider elastic frame elements  
and non-linear elastic connections. 

Vertical and horizontal loads are depicted in Figure 19a. The frame is simple supported and the 
connections are of type D. The physical parameters to model the frame bars are 

  E = 21000kN / cm2 ,   ν = 0.0  and 
  
σ y = 21kN / cm2  (perfect elastoplasticity). Cross sections are 

the same ones employed in example 6.4, i.e.,   W14x48  for beams and   W12x96  for columns. 
Figure 19b presents the horizontal displacement at the top of the structure for concentrated (at 

connections) and distributed (along beams) vertical loads. Figure 19b also shows the vertical dis-
placement at the center of the top beam for the case of distributed loading. The load equivalence is 
given by   P = w L / 2 , in which  w  is the distributed load, see Figure 19a. The distributed load level 
grows until the imminence of failure then the structure is unloaded.  

From Figure 19b, the application of distributed load, instead of concentrated ones, leads to the 
yielding of horizontal elements. As a consequence there is a loss of overall flexural stiffness resulting 
into a smaller critical load when compared to the concentrated loading case. Moreover, the unload-
ing reveals the presence of residual plastic strain for the applied load level. 

 

  
 

(a) Analyzed structure ans loading 
 

(b) Results 
 

Figure 19   Analyzed structure and results 
	  

 
 
 
 
 

	  

0.002P

3.
65

76
m

3.
65

76
m

6.096m

0.001P

w

w

0.002P

3.
65

76
m

3.
65

76
m

6.096m

0.001P
 P  P

 P  P
0.002P

3.
65

76
m

3.
65

76
m

6.096m

0.001P
 P  P

 P  P

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

1400

1600

1800

2000

E
qu

iv
al
en

t	  L
oa

d	  
(k
N
)

D is pla cement	  (cm)

	  H oriz .	  dis p.	  -‐	  C oncetra ted	  loads 	  a t	  connections
	  H oriz .	  dis p.	  -‐	  D is tributed	  loads 	  a long 	  beams
	  V ert.	  dis p.	  -‐	   	  D is tributed	  loads 	  a long 	  beams



H. B. Coda et al. / Physical and geometrical analysis of plane frames considering elastoplastic semi-rigid connections by the positional FEM     1187 

Latin American Journal of Solids and Structures 11 (2014) 1163-1189 

 

7 CONCLUSIONS 

In this work an alternative FEM formulation based on positions to the analysis of geometrical and 
physical non-linear behavior of structures is proposed and implemented. The geometrical description 
is exact and the kinematics considers shear stress in the energy and failure calculations. The cross 
sections are laminated and enable physical non-linear calculations with the required precision. Semi-
rigid elastoplastic connections are developed and implemented. The elastoplastic behavior of con-
nections and bars are multi-linear and enables the accurate reproduction of any stress-strain exper-
imental behavior. Moreover, closed solutions are given to the plastic multipliers improving the effi-
ciency of the proposed technique.  

Examples show the formulation capacity in modeling structures that present large displacements 
and rotations, as well as, the accuracy in modeling continuous elements developing plasticity. Criti-
cal load level can also be achieved using the proposed methodology, as shown at specific examples. 
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