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Abstract

In order to improve predictions of crashworthiness of automotive light materials in finite
element simulation, the ability of the explicit finite element codes to take complex failure
into account has to be increased. In consequence, damage models based on the framework of
continuum mechanics are presented. The first one focusses on the development of ellipsoidal
microvoids during plastic strain, and the second one uses a global damage variable which
evolves with the strain energy density release rate. An original damage parameters identifi-
cation procedure based on an inverse technique with static and dynamic tests is used. The
previous damage framework is applied to magnesium, aluminium and high strength steel
materials.

1 Introduction

Crashworthiness simulation has been a major factor in enabling automotive manufacturers to
achieve a 30 to 50% reduction in development time and costs over the past five years.

However, demand for greater weight savings and crashworthiness protection has only been
possible using new design concepts and use of lightweight materials that have limited ductility
and a complex failure. The possibility of failure is consequently a reality which could dramati-
cally change the course of deformation events. The present crashworthiness codes are inadequate
to predict failure in such materials, or jointing systems, which has raised serious uncertainties
over their results. In order to avoid a return to a ‘prototype based design’ and to maintain
the high level of safety achieved in recent years there is an urgent need to improve the failure
prediction capabilities of crashworthiness simulation codes.

Consequently, it has been necessary to undertake a dedicated European research project
called IMPACT [10] to develop models and methodologies for failure prediction. The results
presented in this paper concern only the metallic materials like aluminium and magnesium
which present complex failures under dynamic loadings. So, specific damage models based on
the framework of continuum damage mechanics are used to describe the development of damage
under mechanical loadings, its progression up to the initiation of a macro-crack and finally the
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growth of this macro-crack up to failure of the component. A damage model such as Gologanu’s
model which could describe all these phenomenon by introducing an accurate description of the
evolution of the microvoids under dynamic loadings is therefore used. The shape and orientation
of the microstructural cavities are taken into account in the finite element model developed
so as to improve prediction of damage and fracture occurrence. The growth, nucleation and
coalescence phases are considered to describe the evolution of the microvoid volume fraction.
The evolution law of porosity due to nucleation is modified to take damage evolution during
pure shear loading into account.

A macroscopic approach, less expensive in terms of number of parameters to identify, and
based on Lemaitre’s model is also used to check its ability to represent correctly the damage
evolution under dynamic loadings. Lemaitre’s model for ductile damage was established for
isotropic conditions and later on extended to include the possibility of anisotropy in the devel-
opment of damage. The damage law is used either in monotonic loadings for the ductile fracture
or in cyclic loadings for low cycle or high cycle loadings. This damage law depends on the strain
energy density release rate which is the principal variable which governs the phenomenon of
damage.

As the damage evolution is localised in the large plastic strain zone, the evolution damage
law and threshold parameters must be identified in this zone. An original approach based on
an inverse method is used. This method consists in the identification of the damage parameters
by correlating an experimental and numerical macroscopic measurement strongly dependent on
the parameters. Dynamic tensile tests on thin notched specimens are used as mechanical tests
to measure macroscopic responses. The experimental data obtained is the variation of the inner
radius of the specimens according to their elongation as well as the variation of forces according
to the elongation of the specimens. Previous damage models are applied to simulate specimens
and parts for aluminium, magnesium and high stress steel materials. Their ability to predict the
stress softening, the damage and the failure path are illustrated and the results are discussed.

2 Constitutive models and parameters identification procedures

2.1 Damage models

2.1.1 Gologanu’s model

The Gologanu, Leblond and Devaux model (GLD) extends the Gurson, Tvergaard and Needle-
man model (GTN) to take the microvoid shape effect into account [1, 7–9, 11, 12]. The GLD
model is based on the analysis of an ellipsoidal cavity embedded in a medium which has the
shape of a confocal.

Due to the shape of the microvoid and its evolution, anisotropy of the damage is then
introduced. The microvoid can also change in direction following the loading direction which in
turn could then change the direction of the crack propagation.
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The plastic potential takes the following form:

φevp = C
‖σ′ + η σH X‖2

σ2
M

− ϕ = 0 (1)

where

ϕ = 1 + (q1 f∗)2−2 q1 f∗ cosh (υ) , υ =
κ σH

σM
, σH = (1− 2 α2) σ11 +α1 σ22 (2)

The notation ‖ • ‖ is used in the original GLD potential to express the calculation of the
von Mises norm

(
‖Tij‖ = [1.5TijTij]

2
)

applied to the deviator stress σ′on which η σH X prod-
uct is added. The material anisotropy is introduced with the Hill 48 norm. The parameters
η, α1, α2,X,C are functions depending on the porosity and the shape parameter S is defined by
the evolution law:
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in which hT (T, ζ) dependent on the triaxiality T ≡ σkk / (3 σeq) according to the sign of ζ =
σkk σ′ii, is given by: {
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with e1 the main axis of the frame of the void.
The microvoid volume fraction is defined by

f =
Vvoids

VA
= 1− VM

VA
, (7)

where VA, VM are respectively the elementary apparent volume of the material and the corre-
sponding volume of the matrix.

The evolution of the microvoid volume fraction is expressed by:

ḟ = ḟgrowth + ḟnucleation (8)
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where ḟgrowth and ḟnucleation are respectively, the growth and nucleation rate of microvoids.
The rate of increase of the microvoid volume fraction, due to the growth of existing microvoids

is given by:
ḟgrowth = (1− f) ε̇kk (9)

where ε̇kk is the first invariant of the plastic strain rate tensor. The nucleation microvoid volume
fraction rate is divided in a part controlled by the equivalent plastic strain and a pure shear
part and is finally expressed by:
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where fN , fS are nucleated microvoid volume fractions, SN , SS are Gaussian standard deviations,
εN , εS are mean effective plastic strains for nucleation, εM is the effective plastic strain and εxy

is the shear strain.
The coalescence function is then defined in function of f by:

f∗ =





f if f ≤ fc

fc +
1/q1

−fc

fF − fc
(f − fc) if f > fc

(11)

where fc is the critical microvoid volume fraction at coalescence onset and fF is the microvoid
volume fraction when ductile fracture occurs. The material is then virgin for a coalescence
function equal to zero and is fully voided when the coalescence function reaches the value of
1/q1 with no stiffness.

2.1.2 Lemaitre’s model

The isotropic damage evolution is described by the scalar D, representing the surface density of
intersections of microcracks and microcavities with any plane in the body [5, 6]. The damage
scalar variable is defined as

D =
Avoids

AA
= 1− AM

AA
(12)

in which Avoids, AA and AM are the voids, apparent and matrix sectional areas for any normal
n respectively.

The damage evolution during plastic straining is defined by the following expression:

Ḋ =
(

Y

S

)s

ε̇p if εp > εD (13)

in which Y is the damaged strain energy rate, S and s are material coefficients, εp is the effective
plastic strain and εD is the plastic strain at damage threshold.
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The strain energy density release rate which governs the phenomenon of damage is expressed
by:

Y =
(1 + ν)

2E (1−D)2
〈
σij

〉 〈
σij

〉
− ν

2E (1−D)2
〈σkk〉2 (14)

in which 〈σ〉 = σ if σ ≥ 0 and 〈σ〉 = 0 if σ < 0, σij the Cauchy stress tensor, ν Poisson’s ratio
of elastic contraction and E Young’s modulus of elasticity.

Lemaitre’s damage model is based on the strain equivalence hypothesis which states that
any strain constitutive equation for a damaged material may be derived in the same way as for
a virgin material (D equals to zero) except that the Cauchy stress tensor σ is replaced by a
damaged stress tensor as follows:

σ̃ =
σ

1−D
. (15)

The equivalent plastic stress is then expressed by:
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where [H] is Hill’s behaviour tensor for anisotropic material description.
In the viscoplastic domain, the viscoplastic potential can be written as follows:

Ωvp = σeq (σ̃)− σv (εp, ε̇p) (17)

with σv (εp, ε̇p) the viscous flow stress experimentally determined which controls the strain-rate
sensitivity of the material.

2.2 Identification of the damage parameters

An identification method based on an inverse technique is used. This method consists in the
identification of the damage parameters by correlating, with an optimisation process (Fig. 1), an
experimental and numerical macroscopic measurement strongly dependent on the parameters [4].
Tensile tests of notched flat specimens with 2, 3 and 4 mm radii are used as experimental tests.
The variation in the bottom of the notch in function of the elongation of the notched specimen
and the variation of the axial force in function of the elongation of the notched specimen are used
as macroscopic measurements. The finite element simulations of the tests are carried out with
the exact boundaries conditions of the experimental set up. For strain rate sensitive materials
like steel, the tensile tests are performed for different plastic strain rates, covering the range of
crash tests (0 to 500 s−1) by using a quasi-static test machine, servohydraulic test machine and
Hopkinson bar (Fig. 2) [2]. A high speed camera, laser extensometer and image analyser are
used to measure the experimental macroscopic response. An imaging correlation program has
been developed to obtain the experimental information in the case of dynamic loadings. The
measurements previously defined are then calculated following the evolution of the shape of the
specimen by means of a speed camera and in house software. For the Hopkinson bars only the
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strength versus elongation of the specimen is used due to the poor number of images obtained
at high speed loadings.

Finally, the correlation is obtained by minimising a cost function which is defined by the
least square approximation as:

Q (α) =
nb point∑

i=1

[
Zsim

i (α)− Z
exp
i

]2

[Zexp
i ]2

(18)

where α are the material parameters to identify, Zsim
i andZ

exp
i are the simulated and experimental

macroscopic responses and nb point is the number of experimental points of the experimental
response.

The scalar material parameters are α={q1, f, fN , SN , εN , S, fc, fF } and α={εD, Dc, S,
s} in the case of GLD’s model and Lemâıtre’s model respectively. A first initial curve called
“numerical non optimised” on figure 1 is obtained with the initial parameters and after some
iterations becomes the “numerical optimised” with the optimised parameters.

The damage parameters of 6014 T7 aluminium alloy and Mg AM 50 magnesium are identified
using the identification procedure presented (Tables 1 and 2). The aluminium material has a
high ductility with a weak anisotropy in behaviour and damage due to the extrusion process.
The magnesium material has a low ductility with a low damage evolution and can be considered
as isotropic. In consequence, the critical damage Dc is low for the Lemaitre model and the critical
microvoid volume fraction at coalescence onset fc is also low considering the initial damage f0 for
the Gologanu model. For this latest model the nucleation works mainly at a very low equivalent
plastic strain which quickly increases the damage value.

Table 1: Damage parameters of 6014 T7 aluminium alloy.
Gologanu’s
model

q1(-) S0(-) fN (-) SN (-) εN (-) fc(-) fF (-) f0(-)
1.52 0.001 0.040 0.1 0.19 0.06 0.08 0.001

Lemaitre’s
model

εD(-) s(-) S(MPa) Dc(-)
0.05 2 1.22 0.34

Table 2: Damage parameters of Mg AM 50 magnesium.
Gologanu’s
model

q1(-) S0(-) fN (-) SN (-) εN (-) fc(-) fF (-) f0(-)
1.98 0. 0.0795 0.114 0.034 0.0385 0.043 0.001

Lemaitre’s
model

εD(-) s(-) S(MPa) Dc(-)
0. 1.85 20 0.001
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Figure 1: Inverse approach – Identification procedure to obtain damage parameters by correlating
experimental and numerical measurements.
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Figure 2: Tensile tests for different plastic strain rates using quasi-static, servohydraulic and
Hopkinson bar test machines.

3 Applications

3.1 Magnesium material

3.1.1 Iosipescu test

Lemaitre’s damage model is used to simulate the damage evolution of the magnesium specimen
under pure quasi-static shear loading known as Iosipescu’s test (Fig. 3) [3]. The damage
parameters previously identified are used. The test is performed until fracture occurs with 5228
solid elements with height integration points and three elements through the thickness (thickness:
3,3mm). The contact between the rigid device and the specimen is assumed as perfect.
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Figure 3: a) Finite element model of Iosipescu test and, b) experimental and numerical forces
versus displacement
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The Mg AM 50 magnesium is an isotropic material. The stress-strain relationship is identified
(Fig. 4).
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Figure 4: Behaviour law for Mg AM50 magnesium.

 
 

 
 

 

Figure 5: Plastic strain evolution in the finite element model of Iosipescu test.

The fracture due to pure shearing is correctly predicted by Lemaitre’s model (Fig.5 and 6).
The damage begins in the centre of the specimen and spreads from the centre to the edge of the
notch. A thin band of damage characterizing the pure shear loading is then created, leading to
the fracture of the specimen when a finite element reaches the critical value of damage Dc (Fig.
5).
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Figure 6: Comparison at the end of the test of the numerical and experimental shapes

3.2 Extruded tube

A dynamic test of an impact bending on a notched extruded tube is performed experimentally
and numerically at 3 meters/second with 50 mm radius impactor of 275 kg mass. The numerical
model consists of 15,614 shell elements (Fig. 4) with a minimum size element of 1mm. For the
solid model the mesh is similar with three elements in the thickness. The failure is simulated by
element elimination with both the Gologanu and Lemaitre damage models.

The 6014 T7 aluminium alloy is an orthotropic material. The corresponding HILL 48 ma-
terial parameters are identified using 0˚, 45˚ and 90˚ tensile tests from the rolling directions
(Table 3). The behaviour law in the 0˚ direction is given in figure 7.

Table 3: HILL 48 material parameters.
F G L M N

1.049 1.3 3 3 3.13
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Figure 7: Behaviour law in the 0˚ direction for 6014 T7 aluminium alloy.
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The experimental and numerical results are in good agreement in terms of instant of failure,
failure path and energy dissipation in particular for Lemaitre’s model (Fig. 8, Fig. 9). The
Golaganu model with shell elements is accurate until the first element elimination but after that,
the strain control of the damage leads to an underestimation of the energy dissipation along the
failure.
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Figure 8: Finite element model of impact bending test.
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Figure 9: Experimental and numerical load versus displacement curves.

Nevertheless, when using shell elements, finite elements simulations lead to an underestima-
tion of the dissipated energy which is explained by the fact that shell elements can not take the
through thickness stresses into account even with seven integration points through the thickness
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as in these simulations. With solid elements the results are extremely promising.

4 Conclusions

In this paper, the Gologanu and Lemaitre damage models are presented. They have been
modified by introducing the Hill potential to take anisotropy of the material into account.
An inverse procedure using an optimizer to correlate experimental and numerical responses of
notched specimen tensile tests is used to determine the damage parameters of both damage
models. This procedure was applied to a magnesium part and an aluminium part and led to
appropriate values of damage parameters in a convenient time for numerical simulations. These
values come from an optimisation process which gives the best solution possible for a range of
possibilities. The reality of these values can always be discussed but they are certainly close to
the real ones.

An Iosipescu’s test on a specific magnesium specimen and an impact bending test on a
notched aluminium extruded tube to localize the failure were performed. The numerical com-
putations were carried out using both damage models and the identified parameters. In general,
the predicted energy dissipation and the failure instant and propagation were found to be in
good agreement with the experimental measures. Nevertheless, as both identification procedures
are still mesh dependent a regularisation technique should be used to avoid this dependency.
Both damage models have a high level of accuracy and can be used for crash simulations. The
Gologanu damage model is very accurate and the use of ellipsoidal microvoids allows one to have
a damage anisotropic evolution which is very interesting for some materials. The complexity of
this model is however a disadvantage for industrial applications. The Lemaitre damage model
is easier to use and identify due to the small number of parameters. The stress control of the
damage evolution is certainly an advantage in the simulation.
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