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Optimum dynamic analysis of 2D frames using free-
scaled wavelet functions
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of 2-dimensional (2D) frames. In the proposed approach, free-
scaled wavelet functions are developed for Multi-Degrees-of-
Freedom (MDOF) structures, particularly, complex Chebyshev
and simple Haar wavelets are implemented. A simple step-by-step
and explicit algorithm is presented to calculate the time history
response of 2D frames. The validity of the proposed procedure is
demonstrated with two examples compared with several common
numerical integration procedures such as family of Newmark-{3,
Wilson-4 and central difference method. Finally, it is shown that
dynamic analysis of 2D frames is optimally accomplished by lesser
computational time and high accuracy of results.
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1 INTRODUCTION

In general, step-by-step time integration methods are being widely considered for the solution of the
second-ordered differential equation of motion. For this case, researchers are more interested to a
powerful and precise numerical integration scheme, particularly, for the solution of Multi-Degrees-
of-Freedom (MDOF) systems. Bathe (1996) and Chopra (1995) presented that time integration
approaches are the most capable schemes for either the nonlinear dynamic analysis or time history
evaluation of large-scaled systems (Wilson et al., 1973).

According to Bathe (1996), Chung (1994) and Huges (1987), numerical integration approaches
are being categorized into the two basic categories. One is explicit scheme and other one is implicit
procedure. An approach will be explicit provided that the equation of motion of the current time
step is not utilized for determination of the current step displacement while will be implicit if it is
involved. On the other hand, there are another two divisions. First, direct integration methods
whereby the quantities of the dynamic system are being calculated through a direct space vector in
the step-by-step solution of equation of motion. Secondly, indirect time integration schemes involv-
ing all corresponding equations being numerically transformed into a new space vector. For exam-
ple, Fourier transformation has been introduced as a well-known and indirect integration scheme
although with a major shortcoming that will be discussed later (Dokainish and Subbaraj, 1989). In
addition, Chang (2002, 2010) reported that the considerable advantage of explicit methods is that it
is unnecessary to solve a system of equations or there is no need to use a particular pre-starting
scheme to commence solving a problem. For this reason, an explicit method is generally preferred
over an implicit method in performing structural dynamics while it can be implemented quite easy
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and requires low storage capacity. Furthermore, regarding to Rio et al. (2005), Torii and Machado
(2012), Wilson et al. (1973), Chang (2010), since the practice of an explicit method is much simpler
than implicit method for solution of dynamic or pseudo-dynamic tests, several explicit schemes have
been improved for not only framed but also Finite Element structural dynamics, shock and wave
propagation problems.

Nowadays, considerable researches are devoted to practice of wavelet analysis in various fields of
science and engineering. Several attractive characteristics of wavelets such as efficient multi-scale
decomposition, localization problems in physical and wave-number spaces and the existence of re-
cursive and fast wavelet transforms, have obtained practice of this efficient method for the numeri-
cal solution of not only ordinary differential equations (ODEs) but also partial differential equations
(PDEs) (Mahdavi and Shojaee, 2013).

Lepik (2005, 2008, 2009), Babolian and Fatahzadeh (2010) and Yuanlu (2010), have implement-
ed the wavelet analysis for solution of ordinary and fractional differential equations. All of them
have considered wavelet analysis to examine equations under different constraints. For instance,
solution of time dependent equations being constrained only in a unit time interval. In addition,
there is no attention addressed on magnitude and qualification of various natural frequencies corre-
sponding to the frequency content of external excitation. Although, practice of several filter banks
has been presented by Salajeghe and Heidari (2006); the time integration process has not been im-
proved yet.

Cattani (2004) and Babolian and Fatahzadeh (2010) reported that, the signal is evaluated based
on its frequency content through the wavelet analysis. This is being accomplished by shifting the
wavelet window along the time axis in the neighborhood of the current window and relies on a time-
scaled-frequency analysis. As a result, all information in the time domain remains. In contrast, the
Fourier transforms (FT), that the information is lost along the time domain.

Fundamentally, the efficiency of numerical procedures is more considered in the case of dynamic
analysis of MDOF systems e.g., 2D frames or trusses (El-Sheikh, 2000 and Liu, 2002). Implementa-
tion of the simple Haar wavelet for the numerical solution of dynamic responses of Single-Degree-of-
Freedom (SDOF) systems has been recently presented by Mahdavi and Shojaee (2013). They found
that even simple Haar wavelet function gains very optimal and accurate results for the SDOF struc-
tures and also they recommended to improve the proposed approach on MDOF structures and to
utilize a complex basis function of wavelet i.e., Chebyshev wavelet function. In this study, the pro-
posed method is generated for solution of MDOF structures using two different types of wavelet
functions such as free-scaled complex Chebyshev wavelet and simple Haar wavelet functions.

This paper is organized as follows. In the next section a brief review of simple Haar wavelet
functions and complex Chebyshev wavelet functions is presented. Section 3 is allocated to imple-
mentation of the wavelet function on solution of dynamic analysis of MDOF systems. For this pur-
pose, a comprehensive procedure is proposed to utilize any wavelet function. Section 4 is devoted to
investigation of the validity and effectiveness of the proposed method on two applications.

2 BRIEF REVIEW ON WAVELET ANALYSIS

2.1 Haar wavelet functions

Haar basis function was presented by Alfred Haar in 1910. The simple family of Haar wavelet for
t € [0,1] is shown by hp,_;(t) (Mahdavi and Shojaee, 2013):

b b+ 0.5 b+05 b+1
m " ] or h;(t) =0 otherwise (1a)

hi(t)=1if te or hj(t)=-1ifte
== |

where;
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i=m+b+1 (1b)

where, integer m = 2/ (G =0,1,...,J) shows the order of wavelet; J is maximum level of the reso-
lution, b =0,1,...,m — 1 indicates the parameter of transition. According to the Segmentation
Method (SM) content of a function is simplified and changed into the new domain that is entirely
appropriate to analysis through the applied approach. In this study, 2M denotes the number of
segmentations in each global time interval regarding to the scale of proposed wavelet. Accordingly,
maximum value of i = 2M = 2/%1 (Lepik, 2005).

Function f(t) may be approximated in Haar series as (Mahdavi and Shojaee, 2013):
2M

F©O =) chi(® (2a)
i=0
In consequence, Haar coefficients ¢; (i = 0,1,2, ...) are calculated by:
1
¢ = fo () hi(t)dt (2b)
0

Hence, through algebraic calculations, Haar coefficients are given directly as follows:
¢ = f()Hau () (2¢)

Hyy, is a square matrix (2M x 2M), including, the first 2M scaled of Haar wavelet. Equivalently,
function f(t) may be rewritten as follows:

F@) = clyHop(t) <3>

For the sake of algebraic approximation, integration of H,,, is obtained by Haar series with new
square coefficient matrix of P,y as following (Lepik, 2005):
1

f Hyp (£)dt = P Hyp(t) (4)
According to the Segmentation Methgd local times are calculated relatively to the scale of wave-
let as (Mahdavi and Shojaee, 2013):
[—-05
2M
Subsequently, the local computation time (7;), is obtained as:

T = 1=1,2,..,2M (5a)

ty — t
te=de(t) +t, =1, = td—” . 1=12,..,2M (5b)
t

Consequently, the coefficient matrix of wavelet is derived corresponding to local computation
time i.e., H(i,1) = h;(t;) for Haar wavelet. Definition of the operation matrix of the integration (P)
and coefficient matrix of Haar (H) are shown in a study conducted by Mahdavi and Shojaee (2013).

2.2 Chebyshev wavelet functions

The general expression for Chebyshev polynomials, the first (T,,) and the second kind (U,) are de-

fined as follows (Integer n indicates order of polynomial) (Fox and Parker, 1968):
n/2

n (n—k—1)! e
Tn(x) = (E) Z((—l)km X (Zx) Zk) , n=1,2,3, .. (63)
& (n = k)!
n—k)!
U,(x) = ;((—1)" oz 2x)"2ky | n=1,2,3,.. (6b)

The variable weight functions of T, (x) and Uy, (x) are obtained as wyyusing Egs. (7a) and (7b),
respectively (Mason and Handscomb, 2003):
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wr, () = {t/v 1=x* <1 (7a)

[x] =1

wun(x) = {%2/71')\/ 1—x2 [x] <1 (7b>

[x] =1

I
@ l 6 o(x)_Tn(x) —]
\ o(x)_Un(x) J
=
3
2
\ _/
= 9
-1 05 0 0,5 X 1
@ - = - UB(X) U12(X) T8(X) T12(X) b

6
4 O S fil ol = {7 o o oy Ao = of = o o
2 Ll i w w Wwow owiuy W w w
\3 -
0 O TA ik gl 3 e o i b B
l A4 N—" 7 V\\l ...........
2 v -0,5
4

PENELTTRAFENAATNDT DO~ 1

Figure 1. (a) Weight functions, (b) shape functions for the 8" and 12" order, (c) shape functions for the 8" and 12"
order, corresponding to the first (T, (x)) and second ((U,(x)) kind of Chebyshev polynomials.

According to Figure la and Eq. (7), orthogonality of Chebyshev polynomials is satisfied using
described weight functions for the both kinds. In addition, Figures 1b and lc illustrate shape func-
tions of the first and second kind of Chebyshev polynomials, namely T, (x) and U,(x), correspond-
ing to the 8" and 12" orders, respectively.

In this paper the first kind of Chebyshev polynomials are discussed. Accordingly, Chebyshev
wavelet refers to the first one (Eq. (6a)). In addition, Chebyshev wavelet arguments are defined by
(Babolian and Fatahzadeh, 2010 and Yuanlu, 2010):

W, =Wk,nmt), n=1,2,..,25x1, m=0,1,.., M—1, k=1,2,3,.. (8)

where, k shows the factor of transition and it is assumed any positive integer, t denotes the time,
m is the degree of Chebyshev polynomials for the first kind and n denotes the considered scale of
wavelet. Subsequently, Chebyshev wavelets are constructed with substituting the first kind (T},)
with relevant weight function for each scale and transition, in the wavelet definition:

n— n
k/2 k() — —
Y@ = |Z) X TR =20+ 1), S <t <5 (9)
0 Otherwise

where Ty, in Eq. (9) is calculated as follows;
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(1/Nr m=0

Tn(®) = iTm x\/% m>0 (10)

Hence, the weight functions are obtained as:
wp(t) = wRF.t—2n+1) (11)

To utilize Chebyshev wavelet through the SM method, if D is assumed as the number of seg-
mentation in global time, M will be the order of Chebyshev polynomials, obtained as follows:

2k-IM =D=M =D/2* (12)
Furthermore, Eq. (2a) is rewritten by Chebyshev wavelet as (Babolian and Fatahzadeh, 2010):
2k-1 -1
FO= DD Comtbum(® = () (13)
n=1m=0

where, vector of Cy, ,, shows the coefficient matrix of Chebyshev and the vector of the Chebyshev
operation matrix is designed by ¥, ,, (t) as (Yuanlu, 2010):

T

C=levcacamr o]y,

e G = [cio Cins Cizp voes Cim—1]” (14)

YO) = [, o W3, o Wit sy s S D00 = [Wi0(), 912 (0, Y1 (), o, Pipa—a O (15)
In addition, the local times 7; in the SM method are calculated as follows:
o= (Ypueryy) 0=05) , 1=1,23,..,25M (16)

Accordingly, a 2¥"1M x 2¥~1M-dimensional square matrix of ¢, ,(t) is obtained as (Yuanlu,
2010):

Gum(@®) = [Y(t) Y(ts) o YA ok-1yxzk-1y (17)

In addition, Babolian and Fatahzadeh (2010) and Yuanlu (2010), presented the definition of the
operation matrix of the integration (P) and coefficient matrix of Chebyshev (¢, (t)).

3 IMPLEMENTATION OF WAVELET SCHEME ON MDOF SYSTEMS

Numerically, second derivation (acceleration) of each degree of freedom for a 2D frame system i.e.,
rotational (0), axial (u) and shear (y), can be shown as Eq. (3) for Haar wavelet or Eq. (13) for
Chebyshev wavelet, as follows:

i(t) = Cf x (1)
J(0) = CF x () (18)
0(t) =3 x (1)

Using Eq. (4) the first order of derivation (velocity), for each degree of freedom (DOF) is ap-

proximated, multiplying by operation of integration (P), as follows (will be applied for 3 degrees of
freedom):

u(t) = T x P x (L) + u,
y(®) = C3 X P xP(®) + ¥ (19)
6()=CcIxPxyt)+6,
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where, u,, ¥, and 6, are initial velocity regarding to the axial, shear and rotational DOFs, respec-
tively. Next, using Eq. (4), quantities of displacement in x and y directions and rotation are numeri-
cally approximated as follows:

u(t) = €T x P2 x y(t) + u,
y(£) = CF X P2 X () + yn (20)

O@) = x P2 xy(t) + 6,
To solve above equations, initial calculation corresponding to each DOF should be approximated
by relative wavelet functions (uy,, y, and 6,). For this purpose, the unity is being expanded by the
Chebyshev wavelet as:

1= xyt) = (‘/5/2) % [1,0,0,...,1,0,0, ...] X ¥(¢t) (21a)

Alternatively, for the Haar wavelet, it is being obtained as:
1=1"xh(t) =[1,00,..,0,0,0,..] X h(t) (21Db)

where, Eqgs. (21a) and (21b) refer to the dependent vectors that make the coefficient matrix of
specific wavelet to be unity. For example, for each particular wavelet, it should be calculated indi-
vidually. Hence, initial calculations of velocity and displacements for three DOF are developed as:

Uy = Ny X (0)
Y = Ni_p X (1) (22a)
6 = NI3 X (1)
Uy = Nj_y X P(t)
Yo = NIy X (©) (22b)

O = NJ_3 x9(©)
where, N_; and NJ_; are 2¥"M X 1 dimension vectors corresponding to the i th DOF, that are
similarly obtained by Chebyshev wavelet, as follows:

NT = vy X (‘/5/2) x [1,0,0,..,1,0,0,..] T (22¢)
NT = 1y ) X (‘/E/Z) x [1,0,0, ...,1,0,0,...] T (22d)

Substituting Eq. (22) into Egs. (19) and (20), quantities of velocity and displacement are numer-
ically obtained for each DOF, as follows (e.g., for axial DOF):

u(t) = CF x P x () + NI_; x ¢(t) (23a)
u(t) =CT xP2xy(t) + N[_; x P xy(t) + NI_; x (t) (23b)

Next, F(t) is approximated with various scale of the proposed wavelet function as follows:
F(&) = fT x(t) (24a)

where, the applied time history force F(t) is 1 x 2¥"1M vector, contains a set of separate values
related to the local times (Eqs. (5) and (16)). Consequently, the coefficient matrix of load is numer-
ically obtained by:

Fixaeim = F1><Zk_lM/d)(Zk_lM)x(Zk_lM) (24b)

Theoretically, dynamic equilibrium governing the linear time history responses of a multi-
degrees-freedom system (MDOF) is expressed as:
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M*.U,+C*U, + K*.U, = F, (25)

where, M*, C*and K* indicate the mass, damping and stiffness matrix of MDOF system, respec-
tively; vector F, is the externally applied load; U, U, and U, contain acceleration, velocity and dis-
placement vectors corresponding to each DOF on discrete set of SM point of local time. On the
other word, provided that d and 2M are assumed as DOF and order of the wavelet (related to the
selected scale of wavelet) respected to the MDOF system, dimension of acceleration, velocity and
displacement matrix are determined as d X 2M where characteristic matrix of system are deter-
mined by d X d matrixes of M*, C*and K*. According to previous derivations, dynamic equilibrium
will be relatively rewritten by its wavelet components as follows:

Cl xp(t) CI xPxyp() + N_; x(t)

M. ; +C*.d,.
Cg X w(t) dx2M

CT x P2x () + NI_; x P x () + NI_; X (t)

: +
Ci X Pxt) +N{_; x lp(t)szM
Iff x w(t)] (26)
K*.d2. =d?. ;
fg x lp(t) axz2m

CIx P2x(t) + NIy X Pxpt) + NI, x () -

To be noted that, d, indicates the convertor of time from local time to the global time.
where, P(t) is eliminated from both side of equation; Eq. (26) is simplified and rearranged to
calculate unknown coefficient matrix of wavelet C/ related to each DOF as below:

[M;1 M;d]{c{} Ci o o c;d]{cf ><P+N1T_1}
P RS B ;

My, .. MGl(ch Chi o CiadCIxP+NI,

Ky .. Kiy {cl ><P2+N1 L XP+NL 1}

Ccl x p? +N1_d XP+NI_,

+

* *
Ki o Kig

flT\ (27)
fa

Expanding Eq. (27) as a vector for each row corresponding to each DOF (d) denoted by j,
yields:

d d d
Z M;cl + Z Ci(CIP+N{_) +z K;i(CIP*+ N{_;P+ N;_;)) = f (28)
i=1 i=1 i=

where, j refers to each DOF from one to d. Next, Eq. (28) is factorized over C] for i th row and

simplified as follows (j is also particular DOF):
d

¢l (Mjl + GiP + KjiP?) = fi — Z[C;iNlT—i + Kji(N{_P + N3_)] (29a)
i=1
where, I denotes a 2M X 2M identity matrix. The unknown coefficient wavelet vectors are calcu-
lated related to the dynamic equilibrium as:

o) ({ o
S11 S12mxa) Clomn f(ZM)l {Z‘ii=1[c1*iN1T—i + K3 (N{_:P + N}
: : : : (29b)
Semxay - SeMxd)eMxd) { C}a fm {Z?=1[C§iN1T—i+K¢;i(N1T—iP+NzT—i)]}
S U e )) N2 J R
“ -~ v (2M)d, @myd -

B Y
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where, (2M X d) X (2M X d) square matrix of S contains the whole characteristics of system i.e.,
effects of mass, damping and stiffness of structure. Accordingly, the first, second and the last 2M
components of the first row in matrix S are computed as follows (using the left side of Eq. (29a)):

Mfll + CI*IP + Kl*lpz = Sll:Sl(ZM)
Mipl + CioP + Kfzpz = 51(2M+1):51(2M><2) (30)

Mgl + CiyP + K{qP? = S1(((@-1)x2m)+1)* S1(2Mxa)

where, S11:S12y) indicates columns of S;; to Sjuy. Furthermore, in Eq. (29b), B is a
(2M x d)1 vector, including d blocks of unknown coefficient vectors of wavelet, corresponding to
each DOF. On the other hand of Eq. (29b), (2M X d)1 vector of R is constructed from effects of
initial conditions subtracting from the external load regarding to each DOF on collocation points.

Subsequently, coefficient vectors are calculated on each DOF using [B] = [S]™*[R]. Eventually,
relevant displacement, velocity and acceleration are calculated on nodes by Eq. (23).

4 NUMERICAL APPLICATIONS

In this section validity of the proposed method is examined through the evaluation of several re-
sults. Two applications are considered, including a small-scaled 2D frame under impact loads, and a
large-scaled 2D frame under complex base excitation.

4.1 A 2D frame under impact loads

Figure 2 shows a 2D frame under two concentrated dynamic loads, including, one vertical force and
one counter-wise moment. The system’s characteristics and load time histories are shown in figure.
Damping value is calculated proportionally as 0.01 percentage of stiffness. In addition to calculate
time history responses, At=0.01 sec has been selected as time increment for common numerical ap-
proaches, while, At=0.05 sec has been utilized for the proposed method.

Coordinates (cm)

@ Fy Node X Y
1 0 0 m=0.02 kg/cm
2 50 100 E=210 GPa
Mz 3 150 100 A=6 cm?
4 0 200 1=4.5 cm’
@ @ Geometric and material properties
1 0,25

é‘o \ go,{s / \
NGV / \

Time(sec) 0 Time(sec) 1

2

Figure 2. A 2D frame under concentrate impact loads.
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The first 2 sec vertical displacements time history for the node 2 shown in Figure 2, were calcu-
lated with the proposed method including, 4™ scale of (designated by 2M4) Haar wavelet (HA) and
4™ and 16™ scale of (designated by 2M4, 2M16) Chebyshev wavelet (CH) and common integration
procedures including, central difference (CD), Wilson-6 (WIL) and exact method (results from
Mode Superposition method using all modes are implied as analytical solution, namely exact meth-
od in this study), and plotted in Figure 3. This figure shows, the result calculated by the proposed
method (particularly using Chebyshev wavelet) is closer to the exact solution than other considered
numerical integration methods.

Exact O WIL X HA@M4) = = CH(2M16) © CH(@M4) A CD

5,5E-4
3,5E-4
1,5E-4
22; 08 ] “O\Ala?l‘\ 1j4 16 — 13/@

Time(sec)

Displacement(cm)

-6,5E-4

Figure 3. Vertical displacement time history of joint 2 shown in frame Figure 2.

To be noted that, percentile total average errors (PTAE) has been computed by assumption of
« for the measurement of exact responses and f for the responses calculated by each numerical
integration approach (relative errors to each Z = time increments) as follows:

Z ®B- a') X 100)/Z (31)

To precisely evaluate the proposed method total average errors and relative computational time
are plotted in Figure 4. Note that dynamic analysis of current application is optimally achieved by
using time increment of 0.05 sec for the proposed approach. Additionally, Figure 4 shows considera-
ble percentile amount of error corresponding to the Haar wavelet compared with Chebyshev wave-
let; although, from its optimization point of view it can be still considered for initial calculations. It
is clearly distinguishable from this figure that, 16" scale of Chebyshev wavelet analyzed considered
application more accurately and optimally.

PTAE =

B 10 m Total Average Errors% + Time Consumption(sec) 05 -
L;i 6 0, 385 0,233 . I = 033
§ 4 + 0 302 0,298 02 %
<, . 0 206 0 177 . 015
g0 - - 0o &

Exact CH(2M16) CH(2M4) HA(2M4) Wllson(9 1.4)
Figure 4. Total average errors in vertical displacement of joint 2, shown in Fig,ure 2 and relative computation time
involved (CH=Chebyshev, CD= central difference, HA=Haar).

Rotation time history of joint 2 shown in frame Figure 2 is plotted in Figure 5 for the first 2 sec-
ond of loading. To be noted that, average acceleration of Newmark- family (designated by AAc),
has been also utilized to calculate responses of rotation. Finally, the total average error for the
rotation time history analysis has been plotted in the Figure 6. For the further investigation, total
computation time involved is shown in this figure with respect to each numerical scheme. The
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1565 Exact o WL A AAc = = CH(2M4) % HA(2M4)
5,0E-6
-5,0E-6 02 06 08 2 14 ‘;hv 18

0z (rad)

-1,5E-5

’ \ /(v
-2,5E-5 Lo
-3,5E-5 ‘i\ /’,

-45E-5 = w
m
55E5 ime(sec)

Figure 5. Rotation time history of joint 2 shown in frame Figure 2 (CH=Chebyshev, HA=Haar, AAc= average
acceleration, WIL= Wilson-8).

efficiency of the proposed scheme is apparent from Figures 5 and 6, particularly when a low scale of
Chebyshev wavelet has been utilized. However, it is theoretically concluded that accurate dynamic
analysis is achieved by using the large scale of wavelet functions. In practice, it is observed that, to
achieve the optimal dynamic analysis, the scale of corresponding wavelet function is directly related
to the frequency content of applied loading. For instance, in this application, it was inferred that
dynamic analysis of the structure is optimally achieved by a low scale of an efficient basis function
facing with smooth types of loadings.

3 u Total Average Errors% + Time Consumption(sec) 0.45
0,4
< 2’5 + —
> 0,385 0,35 E'
e 2 03 &
i 0253
215 * 012 %
S 0,233 T g
< 1 0,15¢
y [}
P 05 g
0,05~
0 1 0
Exact CH(2M16) HA(2M4) AAcC Wilson(6=1.4)

Figure 6. Total average errors in rotation of joint 2, shown in Figure 2 and relative computation time involved
(CH=Chebyshev, HA=Haar, A Ac=average acceleration).

4.2 A large-scaled 2D frame under complex ground acceleration

Figure 7 shows a 2D large-scaled frame subjected to the El-Centro base acceleration. All frame’s
characteristics have been chosen the same and shown in figure. In addition, damping ratio is as-
sumed proportionally 0.01 percentages of stiffness. Furthermore, minimum period of this system was
calculated as Tp,;,=0.01046 sec thus, at least At <0.55Tp,;,= 0.00575 sec (Bathe, 1996 and Hughes,
1987) has been utilized as time increment for common integration schemes, particularly, to gain
stability of responses those computed by central difference method. It is to be noted that At=0.05
and 0.01 sec is selected for the proposed approach and common numerical schemes, respectively.

This problem is evaluated by using five numerical procedures which includes, central difference,
Wilson (0=1.4), linear acceleration from family of Newmark-$ (designated by LA), the proposed
method using 8" scale of Haar (designated by HA(2M8)) and 8™ scale of Chebyshev wavelet (desig-
nated by CH(2M8)), and comparing with the piecewise modal Duhamel integration (supposedly the
exact solution).
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Figure 7. A large-scaled 2D frame under broad-frequency content ground acceleration.

Figure 8 shows the first 10 sec horizontal time history displacements of node 1 shown in Figure
7. It can be clearly deduced from the figure that the accuracy of results calculated by the 8 scale of
Chebyshev wavelet, while most of the time gave the highest value. Furthermore, this figure illus-
trates that responses computed by Haar wavelet are almost undesirable. Theoretically, the short-
coming of Haar wavelet is because of two reasons. Firstly, the point of discontinuity located at node
0.5 (Eq. (1)) in the inherent shape function of Haar wavelet. Secondly, inaccurate approximation of
wide-frequency-content excitation compared with accurate approximation of 8" scale of Chebyshev
wavelet known as low-scaled.
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Figure 8. The first 10 sec horizontal displacement time history of joint 1 shown in frame Figure 7 (CH=Chebyshev,
CD= central difference, HA=Haar).

For the purpose of comparison, the first 3 sec horizontal time history displacements of node 1
shown in Figure 7 have been plotted in Figure 9. It is clearly deduced from figure that results com-
puted by linear acceleration from family of Newmark-3 (known as an explicit method) are almost
near to Wilson-8; although, with lesser errors.

placement(m)

o
o
m
+
o

Dis

Latin American Journal of Solids and Structures 11 (2014) 1036-1048



S.H. Mahdavi and H.A. Razak / Optimum dynamic analysis of 2D frames using free-scaled wavelet functions 1047

LA

Exact = = CH(2M8) O Wilson(e=14) A CD X HA(2MS)

2,0E-4 ?&w\
__15E-4
E 10E-4 ) \Y

=== \\\ 2

[} -

g \ X

& 0,0E+0 \\\G

8

3-5,0E-5 g5 1

0O.1,0E-4
15E-4 Time(sec)
-2,0E-4

Figure 9. The first 3 sec horizontal displacement time history of joint 1 shown in frame Figure 7 (CH=Chebyshev,
CD= central difference, HA=Haar, LA=linear acceleration).

Eventually, the total average error and computation time involved is plotted in Figure 10, corre-
sponding to the first 10 sec of excitation. As can be seen from figure, the results computed by Haar
wavelet, significantly returned the highest value of 80.08% (total average error). As a reason, exter-
nal excitation with broad-frequency contents is not being accurately approximated with simple Haar
wavelet functions. In addition, the computational time was the lowest at 0.991 sec compared with
1.402 sec for a low scale of Chebyshev wavelet or 1.974 sec for central difference method. However,
Figure 10 illustrates that the exact solution gave a computational time of 2.65 sec without errors
but it should be noted that this is applicable for only small-scaled structures. Consequently, this
figure also illustrates the efficiency of the 8" scale Chebyshev wavelet which is sufficiently accurate
to compute broad-frequency-content loading for this particular problem, in comparison with the
other numerical procedures. Overall, from the optimization point of view, it can be concluded that
responses calculated by Haar wavelet may be considered for purposes of initial evaluation.

_ 100 m Total Average Errors% + Time Consumption(sec) 3 o
% + 95 3
e o @D
S 80 2,65 1,974 1, 313 1, 906 2’ o
60 1, 402 Fc 3
g - 155
s 40 g
> L1 =
< S
= 20 0 991 - 054
o @D
= 0 T T T 0 <&
Exact CH(2M8) HA(2M8) Wllson(e 1 4)

Figure 10. Total average errors in displacement of joint 17 shown in Figure 7 and relative computation time
(CH=Chebyshev, CD= central difference, HA=Haar, LA=linear acceleration).

5 CONCLUSIONS

This paper presents a new explicit indirect time integration scheme to calculate the time history
response of 2D frames using free scale of wavelet functions. It is shown that result from utilizing the
proposed approach to solve second-ordered differential equation of motion is optimally being calcu-
lated through a clear cut formulation with a simple algorithm for linear dynamic analysis. Accord-
ing to the comprehensive formulations which were presented, a compatible dynamic analysis will be
accomplished by practice of several wavelet basis functions. In addition, it is deduced that the pro-
posed method is accurate and fast to analyze. This procedure can be simply generalized for large-
scaled and nonlinear systems; although, in this paper just the linear problems have been discussed
to establish and introduce a new methodology.
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