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Abstract

By using characteristics method of viscoelastic wave propagation, the SHPB tests for
the viscoelastic materials are numerically studied in the present paper to see how the basic
assumption of uniform distribution of stress along the thickness of specimen can be satisfied.
It is found that the material parameters such as the relaxation time θ2 describing the high
strain-rate response, the instantaneous wave impedance ratio Ri, and the rise-time of incident
wave all markedly influence the stress uniformity, the strain uniformity and the average strain
rate of the specimen tested. The results of this study may provide useful theoretical support
for the design of a dynamic SHPB test for viscoelastic materials.
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1 Introduction

It is well recognized that what distinguishes dynamic response under high strain rates from static
response are mainly two so-called dynamic effects, i.e. the inertia effect and the strain rate effect.
The former is studied, explicitly or implicitly, by wave propagation in various forms, and the
latter has promoted the study of all kinds of nonlinear rate-dependent constitutive relations and
failure criteria under an extensive range of strain rates. This is particularly true for polymers,
which are more susceptible to strain rate.

The main difficulty is that such two effects are usually coupled. On the one hand, no wave
propagation can be analyzed without knowing the corresponding dynamic constitutive relation
of material, and consequently the basic characteristics of wave propagation inevitably depend
on the strain-rate dependence of mechanical behavior of materials. On the other hand, wave
propagation effects should not be neglected in the study of dynamic constitutive relations and
failure criteria of materials at high strain rates.

The split Hopkinson pressure bar (SHPB) technique, as schematically shown in Figure 1, has
been widely used in studies on the dynamic mechanical behavior of materials at high strain rates
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(102 ∼104s−1), since it was firstly proposed by Kolsky in 1949 [1]. Based on two basic assump-
tions, namely the assumption of one-dimensional stress wave propagation and the assumption
of stress uniformity along the specimen thickness, the inertia (wave) effect and the strain-rate
effect are cleverly un-coupled in the SHPB technique.  
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 Figure 1: Schematics of the split Hopkinson pressure bar device

According to the theory of one-dimensional elastic waves [2, 6], the incident wave εi, the
reflected wave εr and the transmitted wave εt to be measured at the left and right interfaces
of the specimen can respectively be measured without wave dispersion at the other positions of
the elastic input bar and output bar of SHPB.

On the other hand, according to the assumption of stress uniformity or strain uniformity,
we have

σi + σr = σt or εi + εr = εt (1)

where σi, σr and σt (or εi, εr and εt) are the incident, reflected and transmitted stress (strain)
respectively. Thus, the dynamic strain rate ε̇(t), strain ε(t) and stress σ(t) of the short specimen
can be determined by

ε̇(t) =
Cb

L0
(εi − εr − εt) =

2Cb

L0
(εi − εt) = −2Cb

L0
εr

ε(t) =
Cb

L0

∫ t

0
(εi − εr − εt)dt =

2Cb

L0

∫ t

0
(εi − εt)dt = −2Cb

L0

∫ t

0
εrdt

σ(t) =
Ab

2Av
Eb (εi + εr + εt) =

Ab

Av
Ebεt =

Ab

Av
Eb (εi + εr)

(2)

where Eb, Cb and Ab are, respectively, the Young’s modulus, the elastic wave velocity and
the cross-sectional area of the input/output bar; Av and L0 are the cross-section area and the
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thickness of the specimen, the positive sign (+) denotes the σ and ε in compressive state and
the velocity in positive x−axis direction.

With regard to the stress uniformity along the specimen thickness (or the dynamic stress
equilibrium) in a SHPB test, an incisive and quantitative analysis has been made by Yang and
Shim [9], indicating that except for the ratio of wave impedance of the bar and the specimen, the
incident pulse shape (such as rectangular, trapezoidal or ramp-rising) also has remarkable effect
to the stress uniformity in specimen, although the analysis is limited to an elastic deformation
stage of specimens. The dynamic stress equilibrium in relation to soft materials was specially
investigated by Song and Chen [4], indicating that in addition to the low wave impedance and
low wave speed, specimen thickness and strain rate all influence the stress equilibrium of soft
material specimens. However, except Zhou et al [11, 12] who pointed out that the viscoelastic
waves propagating in polymer specimen significantly influence the stress uniformity and conse-
quently the data processing of SHPB test, how the viscous character of rate-dependent materials
influences the stress uniformity has not been analyzed in detail yet. In fact, as can be seen from
a typical oscilloscope record for a viscoelastic specimen in a SHPB test shown in Figure 2, the
duration of transmitted pulse is notably longer than that of incident pulse, reflecting the viscous
dispersion of the viscoelastic waves propagating in viscoelastic specimen. It will undoubtedly
induce a difference between the dynamic stress equilibrium in a viscoelastic specimen and in an
elastic specimen.
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Figure 2: Incident, reflected and transmitted pulses measured for a PMMA specimen in a SHPB
test

In the present paper, the SHPB tests for viscoelastic materials are numerically studied by
using characteristics method of viscoelastic wave propagation to see how the material relaxation
time, the instantaneous wave impedance ratio, as well as the rise-time of incident wave influence
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the stress uniformity of viscoelastic specimens.

2 Numerical modeling for characteristics method

A successful numerical study requires a correct constitutive modeling of the relevant materials.
Experimental investigation of a variety of polymeric materials at strain-rates from 10−4 to 103s−1

show that their nonlinear viscoelastic behaviors are well described by the following ZWT (Zhu-
Wang-Tang) non-linear viscoelastic constitutive equation [5,8] and its corresponding rheological
model is shown in Fig. 3.

σ = fe (ε) + E1

∫ t

0
ε̇(τ) exp(− t− τ

θ1
)dτ + E2

∫ t

0
ε̇(τ) exp(− t− τ

θ2
)dτ, fe (ε) = E0ε + aε2 + bε3

(3)
where, fe(ε) describes the nonlinear elastic equilibrium response, E0, a, b are the corresponding
elastic constants; the next integral term describes the viscoelastic response at low strain-rates,
E1, θ1 are the corresponding elastic constant and relaxation time of the Maxwell element I shown
in Fig. 3, the last integral term describes the viscoelastic response at high strain-rates, E2, θ2

are the corresponding elastic constant and relaxation time of the Maxwell element II shown in
Fig. 3. 

η2= E2 θ2

E2

η1 = E1 θ1

E1

E0

a,b

I II

 

Figure 3: The rheological model corresponding to ZWT equation (3)

Generally, θ1 is of the order of 5-7 times higher than θ2 [8], so under impact loading conditions,
the low frequency Maxell element I has no enough time to relax until the end of loading, and then
it will reduce to a linear spring element with a constant of E1. Furthermore, the deformation
experienced in the dynamic stress equilibrium is generally supposed to be small, so that the
second and third terms of fe(ε) can be ignored. In other words, the nonlinear spring element in
the present case will reduce to a linear spring element with one constant of E0. Consequently,
Eq. (3) reduces to
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σ = Eaε + E2

∫ t

0
ε̇(τ) exp(− t− τ

θ1
)dτ (4a)

Ea = E0 + E1 (4b)

Or, equivalently in a differential form

∂σ

∂t
+

σ

θ2
= (Ea + E2)

∂ε

∂t
+

Ea

θ2
ε (5)

Correspondingly, the nonlinear viscoelastic model in Fig. 3 now reduces to a simpler model
of three-element linear viscoelastic body or the so-called “standard linear solid” in viscoelastic
theory.

The constitutive equation, Eq. (5), together with the following motion equation (6) and
continuity equation (7), compose the governing equations for viscoelastic wave in one dimensional
stress state.

ρv
∂v

∂t
=

∂σ

∂x
(6)

∂v

∂x
=

∂ε

∂t
(7)

where, ρv is the density of the specimen.
To solve the governing equations (5)-(7), the characteristics method is especially convenient

and effective. To find the characteristics of the present problem, the governing equations (5)-(7)
are multiplied by indeterminate coefficients L, M and N , respectively, and then added together
as [9]

(L + N)
∂ε

∂t
+

(
Mρv

∂

∂t
− L

∂

∂x

)
v−

(
N

Ea + E2

∂

∂t
+ M

∂

∂x

)
σ+

N

(Ea + E2) θ2
(Eaε− σ) = 0. (8)

In order that the above equation only contains the directional derivatives along the charac-
teristic lines, indeterminate coefficient L, M and N should satisfy the following relations

dx

dt

∣∣∣∣
C

=
0

L + N
= − L

Mρv
=

M (Ea + E2)
N

. (9)

Obviously, there are two sets of solutions for L, M and N :

L + N = 0, ρv (Ea + E2) M2 = −LN (10a)

L = M = 0, N 6= 0 (10b)
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Then from Eq. (8), (9), (10a), we obtain two sets of real characteristics and the corresponding
characteristic compatibility relations:

dx

dt
= ±

√
Ea + E2

ρv
= Cv (11a)

dv = ± 1
ρvCv

dσ ± σ − Eaε

ρvCvθ2
dt = ± 1

ρvCv
dσ ±

[
σ −Eaε

(Ea + E2) θ2

]
dx (11b)

where “+” is for rightward propagating waves, and “-” is for leftward propagating waves. These
sets of characteristics represent the loci of wave fronts propagating with wave velocity Cv, which
is determined by the instantaneous response of viscoelastic material. Similarly, from Eq. (8), (9),
(10b), we obtain the third set of characteristic and the corresponding compatibility condition
along it, respectively, as

dx = 0 (12a)

dε− dσ

(Ea + E2)
− σ − Eaε

(Ea + E2) θ2
dt = 0 (12b)

Eq. (12a) coincides with the particle motion locus, and Eq. (12b) is actually another form of
the material derivative of viscoelastic constitutive equation (Eq. 5). Note that the terms having
dt or dx in the compatibility conditions (Eq. 11b and Eq. 12b) describe the rate-dependence of
viscoelastic wave propagation and reflect the dispersion and dissipation characters of viscoelastic
waves.

Thus, on the time-space plane tOx, there always exist three characteristics through an ar-
bitrary point. Once the initial-boundary conditions are prescribed, the solution of viscoelastic
wave propagation can be solved by the numerical characteristic method, when the difference
form is used to replace the differential form for all three sets of characteristics relations.

The same governing equations can also be used to solve the elastic wave propagation in the
input bar and output bar, when the Eq. (5) is reduced to Hooke’s law by taking θ in this
equation as infinite, and consequently all the terms having dt or dx in Eq. (11b) and (12b) will
correspondingly vanish.

Now, consider a short viscoelastic specimen with thickness of L0, which is sandwiched be-
tween the input elastic steel bar and the output elastic steel bar (Fig. 1). Assume that a
trapezoidal incident pulse with a stress amplitude of σ0 propagates along the input bar towards
the specimen. For convenience, in the following numerical simulation, the reflected waves from
the other ends of input and output bar are not considered, and the unloading part of the inci-
dent pulse is also not considered, since they are not key factors in the study of stress uniformity,
which should be accomplished in the early time of test.

Thus, the trapezoidal pulse is reduced to an incident wave with a linear ramp rising time
of τ s followed by a constant stress amplitude of σ0, as shown in Fig. 4. In practical numerical
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τs

σ0

σ

0 t

σ*

 
Figure 4: Shape of incident wave propagating in the input bar (boundary condition)

calculation, the linear ramp rising front of incident wave is discretized to a series of ladder-like
loading with a stress increment of σ* per each step, as shown by the dashed lines in Fig. 4.

To investigate the influence of rise-time, introduce the dimensionless rise-time ns defined as
the ratio of the rise-time τ s and the transit time tL, which is the time required for a wave to
travel from one end to another end of the specimen:

ns =
τs

tL
=

τsCv

L0
, tL =

L0

Cv
. (13)

To study numerically the stress uniformity of viscoelastic specimen in the present conditions
by the characteristics method, actually two categories of computation are involved, namely (1)
the computation of “interface points”, such as the points M1, N1, Mk+1, Nk+1 on the t−x plane
shown in Fig. 5(a), and (2) the computation of interior points, such as the points M2, N2, Mk,
Nk on the t− x plane shown in Fig. 5(a).

The solution at an arbitrary “interface point” at the left interface between the specimen and
input bar, for example the point N1, can be obtained as follows. Through the point N1, there
must exist three characteristic lines: the a2N1 from the elastic bar side, and the M2N1 and
M1N1 from the viscoelastic specimen side. Obviously, the following corresponding compatibility
relations along those characteristics should be satisfied, namely, along a2N1, we have

ve(N1)− v2 =
1

ρbCb
[σe (N1)− σ2] (14)

where ρb, Cb are the density and elastic wave velocity of elastic bar respectively. ve, σe are
the particle velocity and stress at point N1 on elastic bar side respectively, and v2, σ2 are the
particle velocity and stress in region 2 of elastic bar respectively; and along the characteristics
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M2N1 and M1N1, we have respectively,

vve (N1)− vve (M2) = − 1
ρvCv

[σve (N1)− σve (M2)] +
Eaε (M2)− σve (M2)

ρvCvθ2
[t (N1)− t (M2)]

(15a)

εve (N1)− εve (M1)− 1
Ea + E2

[σve (N1)− σve (M1)] +
Eaε (M1)− σve (M1)

(Ea + E2) θ2
[t (N1)− t (M1)] = 0

(15b)

where vve, σve are the particle velocity and stress at point N1 on viscoelastic specimen side
respectively. Simultaneously, the particle velocity and stress must respectively satisfy the con-
tinuity requirement at the interface point N1 namely,

σe (N1) = σve (N1) (16a)

ve (N1) = vve (N1) (16b)

Since the solutions at M1 and M2 and in region 2 (i.e σ2 and v2) are all known, the particle
velocity vve(N1), stress σve(N1) and strain εve(N1) can be solved by Eq. (14), (15a,b), (16a,b),
and are correspondingly illustrated on the σ-v plane, as shown in Fig. 5(b).

Similarly, the solutions of an arbitrary point Nk+1 at the right interface between the spec-
imen and output bar can be obtained by the following relations, namely, the characteristic
compatibility relations along NkNk+1 and Nk+1Mk+1 from viscoelastic specimen side

vve (Nk+1)− vve (Nk) =
1

ρvCv
[σve (Nk+1)− σve (Nk)]− Eaεve (Nk)− σve (Nk)

ρvCvθ2
[t (Nk+1)− t (Nk)]

(17a)

εve (Nk+1)− εve (Mk+1)− 1
Ea + E2

[σve (Nk+1)− σve (Mk+1)]+

Eaεve (Mk+1)− σve (Mk+1)
(Ea + E2) θ2

[t (Nk+1)− t (Mk+1)] = 0
(17b)

as well as the characteristic compatibility relation along Nk+1Mk+2 from elastic output bar side:

ve(Nk+1)− ve(Mk+2) = − 1
ρbCb

[σe (Nk+1)− σe (Mk+2)] (18)

Furthermore, the continuity requirement for the particle velocity and the stress across the
right interface of specimen provides:

vve (Mk+1) = ve (Mk+1) (19a)

σve (Mk+1) = σe (Mk+1) (19b)
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Figure 5: Solution of wave propagation in SHPB test for viscoelastic specimen by characteristics
method

Note that the waves propagating rightwards along the elastic output bar are elastic simple
waves, so we have

ve (Mk+2) = ve (Mk+1) (20a)

σe (Mk+2) = σe (Mk+1) (20b)

Thus, from Eq. (17a,b), (18), (19a,b) and (20a,b), the solution at the right interface point
Nk+1, σve(Nk+1), vve(Nk+1) and εve(Nk+1), can be solved.

On the other hand, the solutions at an arbitrary “interior point”, for example the point
N2, can be solved as follows. Through the point N2, there must exist three characteristic lines,
N1N2, N2M3 and N2M2. Obviously, the following three characteristic compatibility relations
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respectively along these characteristics should be satisfied [7]:

vve (N2)− vve (N1) =
1

ρvCv
[σve (N2)− σve (N1)]− Eaεve (N1)− σve (N1)

ρvCvθ2
[t (N2)− t (N1)]

vve (N2)− vve (M3) = − 1
ρvCv

[σve (N2)− σve (M3)] +
Eaεve (M3)− σve (M3)

ρvCvθ2
[t (N2)− t (M3)]

εve (N2)− εve (M2) =
1

Ea + E2
[σve (N2)− σve (M2)]− Eaεve (M2)− σve (M2)

(Ea + E2) θ2
[t (N2)− t (M2)]

(21)

Thus, the unknown σve(N2), vve(N2) and εve(N2), can be determined.

3 Analysis on stress uniformity of viscoelastic materials in SHPB tests

From Eq. (11) it can be seen that the characters of viscoelastic wave are dependent on the
instantaneous wave impedance ρvCv and the relaxation time θ2, which should also influence
the stress uniformity of viscoelastic specimen in SHPB test. Furthermore, as pointed out in [9]
and [4], the incident wave shape (or substantially the rise time τs of incident wave front) may
influence the stress uniformity too. Thus, in addition to the dimensionless rise-time ns defined in
Eq. (13), another dimensionless parameter is introduced, namely, the dimensionless generalized
wave impedance ratio Ri, defined as

Ri =
AbρbCb

AvρvCv
, (22)

where A is the cross-section area, the subscripts b and v denote the quantities of the elastic
bar and the viscoelastic specimens respectively. Therefore, in the following numerical analyses,
we will mainly study how the relaxation time θ2, the dimensionless rise-time τs/tL and the
dimensionless instantaneous wave impedance ratio Ri influence the stress uniformity.

The material parameters used in numerical simulation are ρb = 7.8 × 103 kg/m3, Eb = 210
GPa for elastic steel bar, and those listed in Table 1 for viscoelastic specimens. The material
VE1 in Table 1 represents a grade of PMMA, of which all parameters were experimentally
determined as reported in [7], but the area ratio Ab/Av is adjusted to round up Ri as an integer
15. In order to see how the relaxation time θ2 influence the stress uniformity, we assume two
materials: one is material VE2, of which the only difference from VE1 is that the θ2 for VE2
is only a tenth of that for VE1; another is material EL, of which the only difference from VE1
is that its θ2 is infinitive, namely equivalent to an elastic specimen. Moreover, we assume a
material VE3, of which the only difference from VE1 is that its instantaneous wave impedance
ratio is a third of that of VE1, in order to see how the wave impedance ratio Ri influence
the stress uniformity of viscoelastic specimens. The thickness of all specimens is adopted as
L0 =10mm.
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Table 1: The ZWT parameters of representative materials

material ρv(kg/m3) E0(GPa) E1(GPa) E2(GPa) θ2(µs) Ri

VE1 1.19×103 2.04 0.897 3.07 95.4 15
VE2 1.19×103 2.04 0.897 3.07 9.54 15
VE3 1.19×103 20.4 8.97 30.7 95.4 5
EL 1.19×103 2.04 0.897 3.07 ∞ 15

In the case of rise-time τs/tL = 1, the curves of dimensionless stress σ/σw versus time t/tL on
the left and right interface of specimens for different material VE1, VE2 and EL are respectively
shown in Fig. 6(a, b), and the comparisons of those are shown in Fig. 6(c). As can be seen from
those curves, the stress-time curves for viscoelastic specimens all display attenuation character,
and such attenuation can be observed not only from the whole curve but also from each step
of stress-time curve. Obviously, the relaxation time does influences the stress wave profile in
specimen, and consequently the stress distribution along specimen thickness, although the stress
difference between the left and right interface of specimen become smaller after several forth-
back wave propagating in specimen, and then tends towards the stress uniformity (Fig. 6c). A
further comparisons show that the smaller the relaxation time θ2 is, the lower the stress and the
stress rate are. So it is clear that the analysis of stress uniformity based on elastic waves does
not represent the situation of stress uniformity of viscoelastic specimen at all.

For other three different rise-times τs/tL = 2, 4, 10, the stress-time curves of specimens with
different θ2 calculated at the left and right interfaces of specimen are shown in Fig. 7-Fig. 9.
Comparing Fig. 6-9 with each other, it can be seen that both the dimensionless stress-difference
between left and right interfaces ∆σ

σ0
=

[
σL
σ0
− σR

σ0

]
and the dimensionless stress-rate ∂(σ/σ0)

∂t

decrease with the increase of the dimensionless rise-time τs/tL, except for τs/tL = 1.
For two different rise-times ns = τs/tL = 1, 10, the stress-time curves of specimens with

different Ri (=15, 5) calculated at the left and right interfaces of specimen are shown in Fig.
10 and Fig. 11. It can be seen that the dimensionless instantaneous wave impedance ratio Ri

does influence markedly the stress uniformity, although such influence is different for different
rise time. In the case of τs/tL = 1, the viscoelastic specimen with Ri = 5 reaches the stress
uniformity earlier than that with Ri = 15 (Fig. 10), while in the case of τs/tL = 10, contrarily,
the viscoelastic specimen with Ri = 5 reaches the stress uniformity later than that with Ri = 15
(Fig. 11), since the dimensionless stress difference ∆σ/σ0 decreases with the increase of rise-time
τs/tL.

To evaluate quantitatively the approximity of stress uniformity in viscoelastic specimen,
similar to the suggestion in [12], [3] and [10], a dimensionless stress uniformity parameter αk is
introduced, which is defined as the ratio of the stress difference (σL − σR) between the left and
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Figure 6: Dimensionless stress-time curves of specimens VE1, VE2 and EL with different relax-
ation time θ2under the incident waves with rise-time of τs/tL = 1
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            Figure 7: Dimensionless stress-time curves of specimens VE1, VE2 and EL with different relax-

ation time θ2 under the incident waves with rise-time of τs/tL = 2
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             Figure 9: Dimensionless stress-time curves of specimens VE1, VE2 and EL with different relax-
ation time θ2 under the incident waves with rise-time of τs/tL = 10
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     Figure 10: Dimensionless stress-time curves of VE1 and VE3 with different wave impedance

ratios Ri, in the case of the incident waves with rise-time of τs/tL = 1 
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              Figure 11: Dimensionless stress-time curves of VE1 and VE3 with different wave impedance

ratios Ri, in the case of the incident waves with rise-time of τs/tL = 10
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the right interface and their average

αk =
∣∣∣∣

σL (t)− σR (t)
(σL (t) + σR (t))/2

∣∣∣∣ (23)

if αk ≤ 5% at t ≥ tu, then the tu is approximately defined as the beginning time of stress
uniformity, or, a dimensionless beginning time of stress uniformity (non-integer) can be defined
as

t̄u = nu = tu/tL (24)

where the nu is the number of wave propagation between two interfaces of the specimen before
the stress uniformity reaches.

With regard to the stress uniformity of elastic specimen, when rise-time τs/tL = 2, the
following accurate theoretical formula was deduced by Yang and Shim [9]:

αk =
2β2 (1− β)k−2

(1 + β)k + (1− β)k−2
=

2 (1/Ri)
2 (1− 1/Ri)

k−2

(1 + 1/Ri)
k + (1− 1/Ri)

k−2
for k > 2 (25)

Where the integer k is the traversing number of wave propagating in specimen, the β in Eq.
(25) used in [9] is just the reciprocal of Ri defined in Eq. (22).

For viscoelastic specimen VE1 and VE2 with different relaxation time, how the stress uni-
formity parameter αk varies with the wave transiting number t/tL at different rise-times is
calculated by the characteristics numerical method mentioned above and shown in Fig. 12. The
results predicted by Eq. (25) for elastic specimen EL at τs = 2tL are given in the same figure
too. By comparing those calculated curves, it is clear that concerning on the approximity of
stress uniformity, whatever the relaxation time is 95.4 µs or 9.54 µs, the incident wave with
the shortest rise time τs/tL = 1 displays the worst situation, especially during the early loading
period, while the incident wave with rise time of τs/tL = 2 displays the best situation. A further
longer rise-time will unexpectedly deteriorate the stress uniformity. This conclusion qualita-
tively coincides with the results given by Yang and Shim [9] for the SHPB specimen in an elastic
deformation stage.

For viscoelastic specimen VE1 and VE3 with different wave impedance ratios Ri, how the
stress uniformity parameter αk varies with the wave transiting number t/tL at different rise-
times is calculated by the characteristics numerical method mentioned above and shown in Fig.
13. The results predicted by Eq. (25) for elastic specimen EL at τs = 2tL are given in the
same figure too. It is also shown that whatever the Ri is 15 or 5, the incident wave with the
shortest rise time τs/tL = 1 displays the worst situation, while the incident wave with rise time
of τs/tL = 2 displays the best situation. A further longer rise-time will unexpectedly deteriorate
the stress uniformity.

The numerical results of dimensionless stress uniformity time nu for specimens of different
materials under different rise-time loading are collected together in Table 2. It reveals again that
except for τs/tL = 1, the nu for all material concerned increases with the increase of rise-times
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Figure 12: Relation between αk and t/tL for specimen VE1 and VE2 at different rise-times 
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Figure 13: Relation between αk and t/tL for specimen VE1 and VE3 at different rise-times
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τs/tL. Moreover, as can be seen by the comparison of VE1 and VE2, except for τs/tL = 1, the
nu increases with the decrease of relaxation rime θ2, In other words, the approximity of stress
uniformity become worse with decreasing θ2, so that the viscous effect on the stress uniformity
should be taken into account particularly for the viscoelastic materials with low θ2. On the other
hand, from the comparison of VE1 and VE3, it can be seen that, expect for τs/tL = 1, the nu

increases with the decrease of the wave impedance ratio Ri. However, it is worthwhile noticing
that at a certain combination of θ2 and Ri, for example for the viscoelastic specimen VE1, its
stress uniformity character is nearly the same as that for the corresponding elastic specimen EL.
Only in such situation, the influence of viscous character of viscoelastic materials on the stress
uniformity can be disregarded.

Table 2: The nu required for stress uniformity for different specimens at different rise-times of
incident waves.

nu τs = tL τs = 2tL τs = 4tL τs = 10tL
EL

θ2 = ∞, Ri = 15
10.2 2.2 4.0 5.4

VE1
θ2 = 95.4µs, Ri = 15

10.2 2.2 4.0 5.4

VE2
θ2 = 9.54µs, Ri = 15

7.2 3.2 4.2 5.8

VE3
θ2 = 95.4µs, Ri = 5

5.4 3.2 4.4 6.0

4 Analysis on strain uniformity of viscoelastic materials in SHPB tests

Obviously, in linear elastic analyses, a proportional relation always exists between the stress
wave and strain wave, and consequently, a “stress uniformity” assumption is actually equivalent
to a “strain uniformity” assumption, as expressed by Eq. (1). However, in viscoelastic analyses,
such a proportional relation no longer exists due to the viscous dispersion. For example, when a
constant-velocity loading is suddenly applied to one end of a viscoelastic bar, the stress profile
of viscoelastic wave propagating along the bar displays a relaxation character, while the strain
profile of viscoelastic wave displays a creep character [7]. It means that in SHPB tests for
viscoelastic specimens, not only the stress uniformity but also the strain uniformity should be
inspected, to provide the guideline for assessing the validity of experimental results.

The strain-time curves calculated σ or specimens VE1, VE2 and EL at σ0 = 650 MPa are
shown in Fig. 14 and Fig. 15 respectively for two different rise-times τs/tL = 1 and 10. As can
be seen, contrary to the stress-time curves shown in Fig. 6-9, where the stress-time curves of
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viscoelastic specimens are lower than that of elastic specimen, the strain-time of specimen VE1
is higher than that of specimen EL, and the strain-time curve of specimen VE2 is further higher
than that of specimen VE1. It means that due to the viscous effect, the smaller the θ2 is, the
larger the rheological deformation of specimen will be.

To evaluate quantitatively the approximity of strain uniformity, a parameter γk is introduced
which is defined as the ratio of the strain difference (εL−εR) between the left and right interfaces
and their average

γk =
∣∣∣∣

εL (t)− εR (t)
(εL (t) + εR (t))/2

∣∣∣∣ (26)

Again, if γk ≤ 5% at t ≥ tu, then tu is regarded as the beginning of strain uniformity, and the
t̄u (=nu) defined in Eq. (24) is regarded as the dimensionless beginning time of strain uniformity
(or the wave traversing times for reaching strain uniformity).
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Figure 14: Strain-time curves of specimens VE1, VE2 and EL with different relaxation time θ2

in the case of the incident waves with rise-time of τs/tL = 1

The numerical results of how the strain uniformity parameter γk varies with τs/tL, θ2, Ri,
and how the dimensionless beginning time of strain uniformity nu varies with τs/tL, θ2, Ri,
calculated for specimens VE1, VE2, VE3 and EL are given in Fig. 16 and Table 3, respectively.
Comparing the Fig. 16 with Fig. 12, and the Table 3 with Table 2, it can be seen that the strain
uniformity in general does not coincide with the stress uniformity, except for elastic specimen
EL as could be expected. Comparing the results for the viscoelastic specimens VE1 and VE2,
it can be seen that when θ2 decreases from 95.4 µs to 9.54 µs, the specimen reaches the state
of strain uniformity earlier than that of stress uniformity if the rise-time is shorter. However,
the situation transfers to the contrary if the rise-time becomes longer. On the other hand, by
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Figure 15: Strain-time curves of specimens VE1, VE2 and EL with different relaxation time θ2

in the case of the incident waves with rise-time of τs/tL = 10

comparing the results for specimens VE1 and VE3, it can be seen that when Ri decreases from
15 to 5, the specimen reaches the state of strain uniformity later than that of stress uniformity,
if the rise-time increases to τs/tL = 10. Thus, when viscoelastic materials are tested by SHPB
technique, more attention should be paid to strain uniformity besides stress uniformity, and
experiment data must satisfy both of uniformity requirement.

Table 3: The nu required for strain uniformity for different specimens at different rise-times of
incident waves.

nu τ s = tL τ s=2tL τ s=4tL τ s=10tL
EL, θ2 = ∞, Ri=15 10.2 2.2 4.0 5.4

VE1, θ2 = 95.4µs, Ri=15 9.2 2.2 4.0 5.6
VE2, θ2 = 9.54µs, Ri=15 5.4 2.8 4.4 7.2
VE3, θ2 = 95.4µs, Ri=5 5.4 3.2 4.4 6.4
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 Figure 16: The relation between γk and t/tL for specimen VE1 and VE2 at different rise-times.

5 Analysis on average strain rate of visco-elastic materials in SHPB tests

The most basic aim of SHPB test is to study the material behavior under high strain rates. For
conventional SHPB technique, the strain rate is determined by (see Eq. 2):

ε̇ (t) =
(vr (t)− vl (t))

L0
(27)

where, the subscripts l and r denote respectively the particle velocity v at the left and right
interfaces of the specimen. Taking the specimen VE1 as an example, the calculated particle
velocity-time curves for the left interface, middle section and right interface are given in Fig. 17.
The vertical line of t = tu is also plotted on the same figure for reference, showing the beginning
time of stress uniformity. It can be seen that the velocity distribution along the thickness of
specimen is non-uniform, particularly before t = tu.

On the other hand, the particle strain rate can be directly calculated by the time-differential
of strain:

ε̇ (t) =
dε (t)

dt
(28)

For the specimen VE1 the strain rate-time curves respectively determined by Eq. (27) and
(28) are given in Fig. 18 for different rise-times, showing the non-uniform distribution of strain
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Figure 17: Particle velocity-time curves of VE1 for different rise-times of (a)τs/tL = 1 (b)τs/tL =
2, (c)τs/tL = 4, (d)τs/tL = 10

rate in viscoelastic specimen. The vertical line of t = tu is also plotted on the same figure for
reference, showing the beginning time of stress uniformity. It can be seen that the non-uniformity
of strain rate decreases with increasing rise-time, particularly after the stress-uniformity reaches
(t = tu). Note that the strain rate calculated by Eq. (27) almost coincides with that calculated
by Eq.(28) at the middle section x = L0/2, which actually represents the average strain rate of
specimen. Expect for the case of longer rise-time (τs/tL = 10), the average strain rates after
t = tu all decrease with time. The average strain rates for different specimens at different τs/tL
are listed in Table 4. It is not difficult to find that the strain rate increases with decreasing θ2,
but decreases with decreasing Ri and decreases with increasing τs/tL, namely, the strain rate
is not only dependent on the relaxation time θ2 and the wave impedance ratio Ri but also on
the rise-time of incident wave τs/tL. Those factors should be considered in design of SHPB
experiments.

6 Conclusions

From the above numerical analyses by using characteristics method of viscoelastic wave propa-
gation, obviously, the following main points with regard to the stress uniformity for viscoelastic
materials during SHPB tests can be concluded.
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Table 4: The average strain rate at t = tu for different specimens at different rise-times of incident
waves

average strain rate (103s−1) τ s/tL=1 τ s/tL=2 τ s/tL=4 τ s/tL=10
EL, θ2 = ∞, Ri=15 1.11

VE1, θ2 = 95.4µs, Ri=15 1.29 1.27 1.25 1.14
VE2, θ2 = 9.54µs, Ri=15 1.67 1.65 1.60 1.43
VE3, θ2 = 95.4µs, Ri=5 0.422 0.419 0.415 0.406
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Figure 18: Strain rate-time curves calculated by Eq. (27) and Eq. (28) for different rise-times of
(a)τs/tL = 1, (b)τs/tL = 2, (c)τs/tL = 4, (d)τs/tL = 10
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1. Different from the analysis on the stress uniformity of elastic specimen in SHPB tests, the
stress uniformity of viscoelastic specimen is not only dependent on the wave impedance
ratio Ri and the rise-time τs/tL of incident wave but also on the relaxation time θ2.

2. Except for the case of short rise-time (τs/tL = 1), the smaller the relaxation time θ2 is,
the later the stress uniformity reaches, but the higher the strain rate is.

3. Except for the case of short rise-time (τs/tL = 1), the smaller the instantaneous wave
impedance Ri is, the later the stress uniformity reaches and the lower the strain rate is.

4. Except for the case of short rise-time (τs/tL = 1), the longer the dimensionless rise-time
is, the later the stress uniformity reaches. In fact, when the rise-time is τs/tL = 2, it is an
optimum choice to achieve the stress uniformity, coinciding with the analysis on the stress
uniformity of elastic specimens.

5. Distinguished with the elastic specimen, the strain uniformity and stress uniformity of
viscoelastic specimens are not equivalent but different from each other. The strain uniform
is earlier to reach than stress uniform at shorter rise-time, but it is contrary when the rise-
time becomes longer.

6. The strain rate is non-uniformly distributed along viscoelastic specimens. The average
strain rate increases with decreasing θ2, but decreases with decreasing Ri, and with in-
creasing τs/tL.
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