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Abstract 
In this study, vibration behavior of orthotropic cylindrical shells 
with variable thickness is investigated. Based on linear shell 
theory and applying energy method and using spline functions, 
free vibration relations are derived for shell with variable thickness 
and curvature. Frequency parameter and mode shapes are found 
after solving the frequency Eigenvalue equation. Effects of variable 
thickness along axial and circumferential directions of the shell on 
its frequency parameter are studied and compared against each 
other. Shell thickness is assumed to be varied in a parabolic profile 
along both directions. Also, frequency parameters for both circular 
and parabolic curvatures along circumferential direction are inves-
tigated and results are compared together. In addition, effect of 
variable thickness on the mode shapes is studied.  
 
Keywords 
Cylindrical shell, Parabolic curvature, Variable thickness, Natural 
frequency, Spline function, Discrete method. 
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1 INTRODUCTION 

Cylindrical (open) shells with either circular or noncircular profiles have been widely used in recent 
years, as structural elements within marine, civil, aerospace, and petrochemical industries. In addi-
tion, because of inherent difficulties in assembly of shells with circular profile, noncircular profile is 
preferred in constructing cylindrical shells. Vibration behavior of cylindrical shells with circular 
profile is different than that of cylindrical shells with noncircular profile. 
    Variation of the thickness in a cylindrical shell leads to decrease of its structural weight besides 
reducing cost of needed materials. Moreover, natural frequency of the shell changes as a result of its 
variable thickness. Therefore, vibration analysis of the shells with variable thickness has attracted 
the attention of many researchers in recent years. 
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    Zhang et al. (2001) and Pellicano (2007) studied vibration behavior of the shells incorporating 
circular profile and uniform thickness. A few other researchers have also studied vibration response 
of noncircular shells, among them are Srinivasan and Bobby (1976), Cheung and Cheung (1972) 
and Yamada et al. (1999). 
    Vibration response of flat plates with variable thickness has also been addressed by Huang et al. 
(2005, 2007), Ashour (2001), Sakiyama and Huang (1998), Grigorenko et al. (2008). On the other 
hand, Sivadas and Ganesan (1991), Zhang and Xiang (2006), Duan and Koh (2008) investigated 
vibration response of the closed shells having circular profiles and variable thickness. Their investi-
gations were limited to the effects of variable thickness in one direction (either axial or circumferen-
tial) on vibration behavior of the shells. Later, Grigorenko and Parkhomenko (2011) studied free 
vibration of shallow shells having parabolically-variable thickness with the aid of spline-collocation 
approach. The effects of variable thickness on the vibration behavior of closed elliptical cylindrical 
shells and closed oval cylindrical shells have been studied by Suzuki and Leissa (1985) and Khalifa 
(2011), respectively.  
    Open parabolic cylindrical shell with variable thickness is considered as the main geometry in 
the present study. As it was shown, very few research works have been performed on such struc-
tures. In addition, vibration response of parabolic cylindrical shells and circular cylindrical shells are 
compared against each other’s. As it was mentioned earlier, most of the previous works studied the 
effects of thickness variation in one direction on the vibration response of the shells. Therefore, a 
thorough study on the effects of direction of thickness variation on the vibration response of a shell 
is lacked herein. Present work is aimed at study of vibration response for both parabolic shells 
and circular shells having variable thickness in either axial direction or circumferential direction. 
On the other hand, analytical solutions cannot be simply reached for assessment of vibration re-
sponse of the shells when both radius and thickness are subjected to variation. Thus, numerical 
approaches as well as approximate methods may be used to investigate the vibration response of 
these types of the shells. Techniques based on spline functions are among numerical methods that 
are useful in solving structural problems. In the present work, a relatively simple discrete method 
incorporating spline functions introduced already by Cheng and Chuang (1990) and Cheng et al. 
(1987) for shell and plate with uniform thickness and uniform curvature; is further extended to be 
able to analyze free vibrations of circular/noncircular cylindrical shells with variable thickness.  
 The aims of present work are: (1) to extend discrete method based on the concept of spline func-
tions for studying vibration behavior of parabolic and circular cylindrical shells with non-uniform 
distribution of thickness and to prove its efficiency and accuracy, (2) to evaluate the effects of 
thickness variation along the axis of the shell on its natural frequency in comparison with those of 
thickness variation along the circumference of the shell on its natural frequency, (3) to compare 
natural frequency of cylindrical shells having circular profile with that of cylindrical shells having 
parabolic profile; and finally, (4) to investigate the effects of thickness variation on the mode shapes 
of the shells. 
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2 THEORY AND FORMULATIONS  

Since thickness of the shell is small compared to its other dimensions, the shell is regarded to be 
thin. Consequently, classical shell theory based on Kirchhoff–Love assumptions is used to extract 
governing equations. 

2.1 Geometric formulation 

The main geometry under consideration in this work is a cylindrical shell with an either circular or 
parabolic profile. Both circular and parabolic profiles can be defined by two parameters including 
camber (C) and span (b), Figure 1. Geometrical relations for circular and parabolic profiles are 
given in Table 1. 

 
(a)                                (b) 

Figure 1: (a) circular profile and (b) parabolic profile. 
 

Figure 2 shows a shell with a parabolic profile in the curvilinear coordinate system (xsz). z-axis is 
perpendicular to the middle surface of shell defined by x-s plane. x-axis is along axis of the cylinder, 
while the s-axis is along circumference of the cylinder. Displacement functions along x-axis, s-axis 
and z-axis are respectively represented by U(x,s), V(x,s) and W(x,s). Lame’s parameters for this 
type of shell in the curvilinear coordinate system are equal to one according to Soedel (1993). 
 

 
 
 
 
 
 
 
 
 
 

Figure 2: Parabolic cylindrical shell, curvilinear coordinate system (xsz) 
and displacement functions (Soedel (1993)). 
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2.2. Displacement functions 

Displacement functions for the middle surface of the shell are introduced by cubic and fifth-order B-
spline functions as below. 
 

( ) ( ) ( ) { } ( )
( ) ( ) ( ) { } ( )
( ) ( ) ( ) { } ( )

ω

ω

φ φ ω

U x,s x s A sin t e

V x, s s B sin t e

W x, s x s C sin t e

x

f f
f f

ê ú ê ú= Ä +ë û ë û
ê ú ê ú= Ä +ë û ë û
ê ú ê ú= Ä +ë û ë û

 (1)

 

Row matrices ( )xfê úë û and ( )xjê úë û are cubic B-spline and fifth-order B-spline matrices, respectively. 

Column matrices{ }A ,{ }B and{ }C are unknown coefficients of the displacement functions in Equa-

tion 1. Also, N is the number of divisions along x or s axes. The operatorÄ is the ‘Kronecker prod-
uct’ of the matrices. Formulations of row matrices and also column matrices are given below 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )φ ψ ψ ψ ψ ψ ψ

1 0 1 N 1 N N 1 N 3

2 1 0 N N 1 N 2 N 5

x x x x x x x

x x x x x x x

f f f f f f f
- - + +

- - + + +

é ùê ú = ¼¼ê úë û ë û
é ùê ú = ¼¼ê úë û ë û  

{ } { } { } { } { }
( )

{ } { } { }
{ } { } { } { } { }

( )

{ }

T T T T T
1 0 N N 1

N 3

T
i i1 i2 i3 iN

T T T T T
2 1 N 1 N 2

N 5

T
i i1 i2 i3 iN

A a a a a

a a a a a , i 1, 0,1, N 1 A

C c c c c

c c c c c , i 2, 1

,

N 2

s

,0,

B i sameas

- +
é ù+ë û

- - + +
é ù+ë û

é ù= ¼¼ê ú
ë û
é ù= ¼¼ = - ¼ +ê úë û
é ù= ¼¼ê ú
ë û
é ù= ¼¼ = - - ¼ +ê úë û

 

(2)

 

Standard cubic spline is expressed as 
 

( )

( )
( ) ( )
( ) ( )
( )

φ

3

3 3

3 3
3

3

2 x x 2, 1

2 x 4 1 x x 1,0
1

x 2 x 4 1 x x 0,16

2 x x 1,2

0 x 2

ìï é ù+ Î - -ï ë ûïïï é ùï + - + Î -ï ë ûïï= í é ù- - - Îï ë ûïïï é ù- Îï ë ûïïï >ïî

 (3)

 

According to Cheng et al. (1987), cubic B-spline functions (B3) for N equal divisions (N>4) are 
 

φ

φ φ

φ φ φ φ φ

φ

i 3

1 3 N 2 3

0 3 3 N 1 3 3 3

1 3

x
i , i 3, 4, 5 ,N 3

h
x x

1 N 2
h h

x x x 1 x x
4 1 N 1 N N 1

h h h 2 h h
x

1
h

f

f f

f f

f

- -

-

æ ö÷ç ÷= - = ¼ -ç ÷ç ÷çè ø
æ ö æ ö÷ ÷ç ç÷ ÷= + = - +ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

æ ö æ ö æ ö æ ö æ ö÷ ÷ ÷ ÷ ÷ç ç ç ç ç÷ ÷ ÷ ÷ ÷= - + = - + - - + - -ç ç ç ç ç÷ ÷ ÷ ÷ ÷ç ç ç ç ç÷ ÷ ÷ ÷ ÷ç ç ç ç çè ø è ø è ø è ø è ø
æç= -ç
è

φ φ φ φ

φ φ

3 3 N 3 3

2 3 N 1 3

1 x x x x
1 N 4 N 1

2 h h h h
x x

2 N 1
h h

f

f

f +

ö æ ö æ ö æ ö æ ö÷ ÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ ÷- + + = - - - -ç ç ç ç÷ ÷ ÷ ÷ ÷ç ç ç ç ç÷ ÷ ÷ ÷ ÷ç ç ç ç çø è ø è ø è ø è ø
æ ö æ ö÷ ÷ç ç÷ ÷= - = - -ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

 (4)
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Expression for the standard fifth-order spline is 
 

( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )

φ

5

5 5

5 5 5

5 5 5
5

5 5

5

3 x x 3, 2

3 x 6 2 x x 2, 1

3 x 6 2 x 15 1 x x 1,0
1

3 x 6 2 x 15 1 x x 0,1120

3 x 6 2 x x 1,2

3 x x 2,3

0 x 3

ìï é ù+ Î - -ï ë ûïïï é ùï + - + Î - -ï ë ûïïï é ù+ - + + + Î -ï ë ûïïï= í é ù- - - + - Îï ë ûïïï é ù- - - Îï ë ûïïï é ù- Îï ë ûïïï >ïïî

 (5) 

Again, according to Cheng et al. (1987), fifth-order B-spline functions (B5) for N equal divisions 
(N>6) are 
 

ψ φ

ψ φ

ψ φ φ

ψ α φ α φ φ

ψ α φ α φ φ

i 5

2 5

1 5 5

0 11 5 12 5 5

1 21 5 22 5 5

x
i , i 4,5,6 N 4

h
x

2
h
x x

1 26 2
h h

x x x
2 1

h h h
x x x

1
h h

-

-

æ ö÷ç= - = ¼ -÷ç ÷ç ÷è ø
æ ö÷ç= + ÷ç ÷ç ÷è ø
æ ö æ ö÷ ÷ç ç= + - +÷ ÷ç ç÷ ÷ç ç÷ ÷è ø è ø
æ ö æ ö æ ö÷ ÷ ÷ç ç ç= + + + +÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷è ø è ø è ø
æ ö æ ö÷ ÷ç ç= + + +÷ ÷ç ç÷ ÷ç ç÷ ÷è ø è ø

ψ α φ α φ φ

ψ φ

ψ φ

ψ β φ β φ φ

ψ β φ

2 31 5 32 5 5

3 5

N 3 5

N 2 31 5 32 5 5

N 1 21 5

1
h

x x x
2 2

h h h
x

3
h

x
N 3

h
x x x

N 2 N N 2
h h h
x

N
h

-

-

-

æ ö÷ç - ÷ç ÷ç ÷è ø
æ ö æ ö æ ö÷ ÷ ÷ç ç ç= + + + -÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷è ø è ø è ø

æ ö÷ç= - ÷ç ÷ç ÷è ø
æ ö÷ç= - + ÷ç ÷ç ÷è ø

æ ö æ ö æ ö÷ ÷ ÷ç ç ç= - + + - + - -÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷è ø è ø è ø

= - β φ φ

ψ β φ β φ φ

ψ φ φ

ψ φ

22 5 5

N 11 5 12 5 5

N 1 5 5

N 2 5

x x
1 N N 1

h h
x x x

N 2 N 1 N
h h h
x x

N 1 26 N 2
h h
x

N 2
h

+

+

æ ö æ ö æ ö÷ ÷ ÷ç ç ç- + - + - +÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷è ø è ø è ø
æ ö æ ö æ ö÷ ÷ ÷ç ç ç= - - + - - + -÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷è ø è ø è ø
æ ö æ ö÷ ÷ç ç= - - + - -÷ ÷ç ç÷ ÷ç ç÷ ÷è ø è ø
æ ö÷ç= - - ÷ç ÷ç ÷è ø

 

(6) 

 
where, for cc boundary condition (clamped edges at x=0, x=L) 
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α α β β

α α β β

α α β β

11 12 11 12

21 22 21 22

31 32 31 32

165 33
4 8

261
33

11
33

é ù-é ù é ù ê úê ú ê ú ê úê ú ê ú ê ú= = -ê ú ê ú ê úê ú ê ú ê úê ú ê ú ê ú-ë û ë û ë û  
 

And for ss boundary condition (simply supported edges at x=0, x=L) 
 

α α β β

α α β β

α α β β

11 12 11 12

21 22 21 22

31 32 31 32

12 3

1 0

1 0

é ù é ù é ù-ê ú ê ú ê ú
ê ú ê ú ê ú= = -ê ú ê ú ê ú
ê ú ê ú ê ú-ê ú ê ú ê úë û ë û ë û  

 

2.3 Mass and stiffness matrices  

Extracted relations in this section are valid only for a shell with a general geometry. 

2.3.1 Mass matrix 

Kinetic energy of a shell with variable thickness can be expressed in the following form 
 

( ) { } { }2 2 21 1

2 2

T
shell shell shellT t U V W dxds Mr d dé ù= + + = ë ûòò  (7)

 

where, shellr is density, is thickness function of shell, U, V and W are displacement functions of 

the middle surface of shell. Also,{ } { } { } { }
T

A B Cd é ù= ê úë û , where{ }A , { }B  and { }C  are unknown 

coefficients of displacement functions. Mé ùë û is also mass matrix. 

 After substituting the displacement functions (Equation 1) into the Equation 7 and taking nu-
merical integration, the mass matrix is obtained by equation 8. This mass matrix is for a shell with 
variable thickness in x-direction. Through replacing x by s, the mass matrix for a shell with variable 
thickness in s-direction can be easily obtained. 
 

( )
( )

( )
ρ

tx s

shell tx s

tx s

F F 0 0

M 0 F F 0

0 0 H H

é ùÄê ú
ê úé ù = Äê úë û
ê úÄê úë û

 (8)

 
2.3.2 Stiffness matrix 

Strain energy for a shell with a general geometry can be written as follows 
 

{ } { } { } { }1 1

2 2

T T
shellU D dxds Ke e d dé ù é ù= =ë û ë ûòò  (9)

 

where, the strain vector is 
 

{ }ε ε ε γ χ χ χ1 2 12 1 2 12
é ù= ê úë û  
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The components of strain vector are 
 

ε

ε

γ

χ

χ

1
1

1 1 2 1

2
2

2 1 2 2

2 1
12

1 2 2 1

1
1

1 1 1 1 2 2 2

2
2 2 2

A1 U 1 W
V

A x A A s R
A1 V 1 W

U
A s A A x R
A A V

A s A A s A
A1 U 1 W 1 V 1 W

A x R A x A A s R A s

1 V 1 W

A s R A s

U

¶
= + +

¶ ¶
¶

= + +
¶ ¶

æ ö æ ö¶ ¶÷ ÷ç ç÷ ÷= +ç ç÷ ÷ç ç÷ ÷ç ç¶ ¶è ø è ø
é æ ö æ öù¶¶ ¶ ¶÷ ÷ç çê ú÷ ÷= - + + +ç ç÷ ÷ç çê ú÷ ÷ç ç¶ ¶ ¶ ¶è ø è øë û

æ¶ ¶ç= - +çç¶ ¶è

χ

2

1 2 1 1
2

1 2 1 2

12 1 2 1 2 1 2 1 2 1 2

A1 U 1 W

A A x R A x
A A A1 1 W 1 W W 1 U 1

A A A s x A x s x s R A s A

W,U,V are displacement funct

A V

R A x A

é ö æ öù¶ ¶÷ ÷çê ú÷ ÷+ +ç÷ ÷çê ú÷ ÷ç ç¶ ¶ø è øë û
é æ ö ùæ ö æ ö¶ ¶¶ ¶ ¶ ¶ ¶÷ ÷ ÷ç ç çê ú÷ ÷ ÷ç- - + + +ç ç÷ ÷ ÷ç ç çê ú÷ ÷ ÷ç ç÷ç= - ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è øè øê ú
ê ú
ê úë û

1

2
'

1 2

ions

R is radius of curvature along X axis

R is radius of curvature along S axis

A ,A are Lame parameters

ìïïïïïïïïïïïïïïïïïïïïïïïïïïïïíïïïïïïïïïïïïïïïïïïïïïïïï

-
-

ïïïïî

 

 

Flexural rigidity of the shell is given as 
 

( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

( )

11 12

21 22

66

11 12

21 22

66

B x, s B x, s 0 0 0 0

B x, s B x, s 0 0 0 0

0 0 B x, s 0 0 0

0 0 0 D x, s D x, s 0

0 0 0 D x, s D x, s 0

0 0 0 0 0 D x, s

D

é ù
ê ú
ê ú
ê ú
ê ú
ê úé ù = ê úë û ê ú
ê ú
ê ú
ê ú
ê úë û

 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( )66

2 2
66

66

,
, , , ,

1

, , , , ,

', ,
, ,

12 6

i i
ii ij j ii

iji j

ij j ii ij

jii
ii

E t x s E is elasticmodulus
B x s D x s D x s

G is shear modulus

B x s B x s B G t x s t x s is thickness function

is poisson s ratioB t x s B t x s
D x s D

J
J J

J
J

ìïï = =ïï -ïïïï = =íïïïïï = =ïïïî

 

Stiffness matrix  is  

11 12 13
T T T

21 22 23 21 12 31 13 32 23

31 32 33

k k k

K k k k , k k , k k , k k

k k k

é ù
ê ú
ê úé ù = = = =ê úë û
ê ú
ê úë û  

After substituting displacement functions from the Equation 1 into the Equation 9 and taking an 
integration of it, components of stiffness matrix are obtained as follows 
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( )

( )

( )

( )

1
11 tx s 12 tx s

1 2

T T1
12 2 tx s 12 tx s

1 2

T T1
13 2 tRx s

1 2

2
22 tx s 12 tx s

1 2

23 1

E
k D F G F D

1
E

k E E G E E
1

E
k 1 L G

1
E

k F D G D F
1

k

J J

J
J J

J
J J

J J

J

éæ ö ù÷çê ú÷= +ç ÷çê ú÷ç -è øë û
é æ ö ù÷çê ú÷= +ç ÷çê ú÷ç -è øë û
é æ ö ù÷çê ú÷= + ç ÷çê ú÷ç -è øë û
éæ ö ù÷çê ú÷= +ç ÷çê ú÷ç

Ä Ä

Ä Ä

Ä

Ä
-è øë û

=

Ä

+( )

( ) ( )

( ) ( )

( )

T T2
tx Rs

1 2

1 2
1 tx RRs 2 tRx s

1 2 1 2

T2 1
33 1 tttx s tttx s

1 2 1 2

1
2

1 2

E
1 G G

1

E E
1 H H 1 H H

1 1

E E
J J K H

12 1 12 1

E
J

12 1

k

J J

J J
J J J J

J
J J J J

J
J J

é æ ö ù÷çê ú÷ç ÷çê ú÷ç -è øë û
æ ö æ ö÷ ÷ç ç÷ ÷+ + +ç ç÷ ÷ç ç÷ ÷ç ç- -è ø è ø

æ ö æ ö÷ ÷ç ç÷ ÷ç ç= + +÷ ÷ç ç÷ ÷÷ ÷ç ç- -è ø è ø
æ ö÷ç ÷ç+ ÷ç ÷÷ç -è ø

Ä

Ä Ä

Ä Ä

( )
T 12 2
tttx s tttx s tttx s

1 2

G E
J I I H K

6 12 1 J J

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úæ öê ú÷ç ÷ç+ +ê ú÷ç ÷ê ú÷ç -è øë û

Ä Ä Ä

 (10)

 

Some matrices are available in the list of the elements in the formulations of mass and stiffness 
matrices, which are called as spline matrices. Some of these spline matrices have been already de-
rived by Cheng et al. (1987), while other spline matrices representing the effect of variable radius 
and thickness are extracted herein. Formulations of all spline matrices are presented in Table 2 and 
Table 3. 
 

( ) ( )
L

T

x

0

F x x dxf fê úë û ê úë û= ò  ( ) ( )φ
L

T '
x

0

L x dxxfê ú
êê ú
ëë û úû= ò  ( ) ( )φ φ

L
T' '

x

0

I x x dxê ú ê ú= ê ú ê úë û ë ûò  

( ) ( )φ
L

T

x

0

G x dxxfê úë û ê úë û= ò
 

( ) ( )
L

T' '
x

0

D x dxxf fê ú
ê úë û

ê ú= ê úë ûò ( ) ( )φ φ
L

T ''
x

0

J x dxxê ú= û
ê ú
ê úë ûëò

 

( ) ( )φ φ
L

T'' ''
x

0

K x dxxê ú ê ú
ê ú ê úë û ë û= ò

 

( ) ( )φ φ
L

T

x

0

H x x dxê ú ê ú= ë û ë ûò ( ) ( )
L

T '
x

0

E x dxxff ê úê ú= ê úë û ë ûò

( ) ( )φ
L

T'
x

0

Z x x dxfê ú ê úê ú ë ûë û= ò  ( ) ( )φ φ
L

T'' '
x

0

S x x dxê ú ê ú= ê ú ê úë û ë ûò  

Note: Through replacing x by s in these relations, spline matrices in s direction can be obtained. 

 

Table 2: Spline matrices used in this study and also the study of Cheng et al. (1987). 

 

2.4 Frequency equation 

Total potential energy for free vibration of a shell is expressed as follows 
 

{ } ( ){ }π
Π δ ω δ

ω

T 22
K Mé ùé ù é ù= -ê úë û ë ûë û

 (11)
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Substituting mass and stiffness matrices into the above equation and using the Hamilton’s principle, 
following form of the frequency equation is obtained. 
 

( ){ }ω δ2K M 0é ù é ù- =ë û ë û  (12) 
 

 Equation 12 is of eigenvalue type in which the eigenvalues represent the natural frequencies. 
Unknown coefficients of displacement functions create the eigenvectors. Solving the Equation 12 will 
result in the frequencies and corresponding mode shapes. 
 

3 NUMERICAL EXAMPLES AND DISCUSSIONS 

Based on derived formulations in the previous section, a code was written in the MATLAB envi-
ronment in order to calculate the natural frequencies and also corresponding mode shapes. 
 
3.1 Verification of present method 

Accuracy of presented formulations is investigated in this section in order to demonstrate its ability 
to analyze free vibration of both parabolic and circular cylindrical shells with either uniform or var-
iable thickness. A comparison between natural frequencies for a circular cylindrical shell having a 
uniform thickness as obtained by the present method and also by Srinivasan and Bobby (1976) is 
given in Table 4. It should be mentioned that Srinivasan and Bobby (1976) used Rayleigh–Ritz and 
matrix methods in their work. On the other hand, natural frequencies as obtained by the present 
method and the method developed by Cheung and Cheung (1972) are provided in Table 5 for a 
parabolic cylindrical shell with a constant thickness. Cheung and Cheung (1972) used strip method 
to extract relations for vibration analysis of a cylindrical shell with parabolic profile. In Table 6 
results of the present method have been compared with those of Huang et al. (2005) who used dis-
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Note: Through replacing x by s in matrices, spline matrices in s direction can be obtained. 
 

Table 3: Spline matrices extracted in this study.
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crete method in combination with Green’s function to obtain natural frequency solution for flat 
plates with variable thickness in one direction. Table 7 shows frequency parameters for a shallow 
shell with rectangular platform that its thickness varies parabolically in one direction (Grigorenko 
and Parkhomenko (2011)). Grigorenko and Parkhomenko (2011) obtained their solution method by 
using spline-collocation method. 
 

 
 
 
 
 
 
 
 

Difference (%) 

Petyt as reported in Srinivasan 
and Bobby (1976) 

             Present work 

Analysis Method Mesh Divisions 
Mode 

number 
16 16 Re .[3]

Re .[3]
100

f

f

w w

w

´æ ö- ÷ç ÷ç ÷ç ÷÷çè ø
Finite element

Extended Ray-
leigh-Ritz 

16 16´  14 14´  12 12´  

-0.68 870 870 876 879 882 1st 

0.31 958 958 955 957 959 2nd 

0.46 1288 1288 1282 1284 1297 3rd 

-0.14 1363 1364 1366 1367 1369 4th 

-0.20 1440 1440 1443 1444 1446 5th 

2 2 2
sE 1.0e7 ,R 30in, 0.33,a 3in, b 4in, thickness 0.013,ρ 0.0002484 , B.c CCCClb in lbs in         

Table 4: Natural frequencies (Hz) for a circular cylindrical shell model (Srinivasan and Bobby (1976)). 

Difference (%) 

Cheung and Cheung (1972) 

Present Study  

Mesh Divisions 
Mode 

number 
16 16 Re .[4]

Re .[4]
100

f

f

w w

w

´æ ö- ÷ç ÷ç ÷ç ÷÷çè ø
 16´ 16 14´ 14 12´ 12 

0.831683 0.303 0.30552 0.307773 0.30914 1st 

0.222222 0.306 0.30668 0.307101 0.30722 2nd 

2.912477 0.537 0.55264 0.558907 0.56179 3rd 

0.32342 0.538 0.53974 0.539315 0.54222 4th 

-0.44834 0.571 0.56844 0.568532 0.56934 5th 
 

E 1, 0.3,a 1in,b 1in, thickness 0.191in,ρ 1,B.c SSSS        

Table 5: Natural frequencies (Rad/sec) for a parabolic cylindrical shell model (Cheung and Cheung (1972)). 
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0.5b a   1.0b a    

    Frequency 

0.80 0.40 0.00 0.80 0.40 0.00 parameter 

11.954 11.147 10.2567.8977.3866.765 λ 	  
11.894 11.113 10.194 7.945 7.402 6.780 λ 	 	 .		  

0.50 0.30 0.60 -0.60 -0.21 -0.22 Difference (%) 
14.386 13.286 12.17110.4689.7088.944 λ 	  
14.419 13.422 12.28910.4759.7708.953 λ 	 	 .  

-0.22 -1.01 -0.96 -0.06 -0.63 -0.10 Difference (%) 
17.862 16.587 15.27012.05011.21710.305 λ 	  

17.908 16.695 15.301 12.046 11.232 10.293 λ 	 	 .		  

-0.25 -0.64 -0.20 0.03 -0.13 0.11 Difference (%) 
18.434 17.563 16.24613.47512.53211.511 λ 	  
18.511 17.476 16.131 13.610 12.679 11.615 λ 	 	 .		  

-0.41 0.49 0.71 -0.99 -1.15 -0.89 Difference (%) 
 

1 2 s 12 0E 60.7e9pa,E 24.8e9pa,R , 0.23,h 0.01a,B.C CCCC        

( ) ( )
( ) ( )

λ ρ ω2 4
0 i 0 i 0 21 12

3 Re Re
0 2 0 21 12

flat plate thickness h 1 x , h a D 1

D E h 12 1 , 100 /
present work f f

a

Difference

a J J

J J l l l

é ù= + = -ë û
é ù= - = -ë û

 

Table 6: Dimensionless frequency parameter for a flat plate with variable thickness in one direction 
(Huang et al. (2005)). 

 

0.4,BC2a =  0.4,BC1a = -  Frequency 
parameter 

20´ 20 18´ 18 16´ 16 14´ 14 12´ 12 20´ 20 18´ 18 16´ 16 14´ 14 12´ 12 l  

29.52 29.53 29.53 29.55 29.58 15.56 15.56 15.57 15.57 15.58 Present work
1l  

29.78 29.85 30.12 30.26 30.55 15.71 15.73 15.75 16.12 16.65 Grigorenko (2011)
1l  

-0.87 -1.07 -1.95 -2.34 -3.17 -0.95 -1.08 -1.14 -3.41 -6.42 Difference (%) 

47.81 47.85 47.92 48.05 48.32 37.68 37.70 37.74 37.81 37.95 Present work
2l  

47.91 48.09 48.43 48.64 49.32 37.33 37.34 37.44 37.99 38.36 Grigorenko (2011)
2l  

-0.20 -0.49 -1.05 -1.21 -2.02 0.93 0.96 0.80 -0.47 -1.06 Difference (%) 

56.11 56.11 56.12 56.12 56.13 38.89 38.89 38.89 38.90 38.90 Present work
3l  

56.96 57.02 57.36 57.52 58.66 38.97 39.13 39.25 39.58 40.06 Grigorenko (2011)
3l  

-1.49 -1.59 -2.16 -2.43 -4.31 -0.20 -0.61 -0.91 -1.71 -2.89 Difference 

70.46 70.48 70.52 70.59 70.75 54.00 54.01 54.04 54.09 54.18 Present work
4l  

70.81 70.87 71.16 71.44 71.76 54.19 54.23 54.28 54.35 54.40 Grigorenko (2011)
4l  

-0.49 -0.55 -0.89 -1.1 -1.4 -0.35 -0.40 -0.44 -0.47 -0.40 Difference  

1 2 12 12 03.68 10 , 2.68 10 , 0.5 10 , 12.5, 12.5, 0.077, 0.04s xE e pa E e pa G e pa R R hJ= = = = = = =  

( ) ( )( )2
0,BC1 : CCCC,BC2 : SSSS, 6 6 1 1h x h x xa= - + +  

( )2 3 Re Re0
11 1 0 21 12

11

, 12 1 , 100
present work f f

i i
h

a D E h Difference
D

rl w J J l l lé ùé ù= = - = -ê úë û ë û
 

 

Table 7: Dimensionless frequency parameter for a shallow shell with variable thickness in one direction (Grigo-
renko and Parkhomenko (2011)).
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It is observed that present solution method is in sufficient agreement with the studies performed by 
above-mentioned researchers. Comparison results have shown the accuracy of present solution 
method for analyzing vibration of shells. In parallel, a convergence study was performed during the 
comparison analyses, based on which the number of divisions in both directions was defined to be 
equal to 16 for all examples. 
 

Thickness functionB.c 
Mechanical properties 

of material

 Geometrical properties of 

model

 Profile 
Model 

ID 

Thickness function 1 B.c1 
B.c2 
B.c3 

x

s

xs

xs

E 3.68e10Pa

E 2.68e10Pa

G 0.50e10Pa

0.077J

=
=

=
=

 
( )

( )
( )

camber c 0.05m

span of shell b 1m

lenght of shell a 1m

=

=

=

 Circular 
M1x 

Thickness function 2 M1s 

Thickness function 1 B.c1 
B.c2 
B.c3 

x

s
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E 3.68e10Pa

E 2.68e10Pa

G 0.50e10Pa

0.077J

=
=

=
=

 
( )

( )
( )
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=

=

=

 Circular 
M2x 

Thickness function 2 M2s 

Thickness function 1 B.c1 
B.c2 
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x

s
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xs

E 3.68e10Pa

E 2.68e10Pa

G 0.50e10Pa

0.077J

=
=

=
=

 
( )

( )
( )

camber c 0.15m

span of shell b 1m

lenght of shell a 1m

=

=

=

 Circular 
M3x 

Thickness function 2 M3s 

Thickness function 1 B.c1 
B.c2 
B.c3

 

x

s

xs

xs

E 3.68e10Pa

E 2.68e10Pa

G 0.50e10Pa

0.077J

=
=

=
=

 
( )

( )
( )

camber c 0.05m

span of shell b 1m

lenght of shell a 1m

=

=

=

 parabolic 
M4x 

Thickness function 2 M4s 

Thickness function 1 B.c1 
B.c2 
B.c3

 

x

s

xs

xs

E 3.68e10Pa

E 2.68e10Pa

G 0.50e10Pa

0.077J

=
=

=
=

 
( )

( )
( )

camber c 0.1m

span of shell b 1m
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=

=

=

 parabolic 
M5x 

Thickness function 2 M5s 

Thickness function 1 B.c1 
B.c2 
B.c3

 

x

s

xs

xs

E 3.68e10Pa

E 2.68e10Pa

G 0.50e10Pa
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=
=

=
=

 
( )

( )
( )
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span of shell b 1m

lenght of shell a 1m

=

=

=

 parabolic 
M6x 

Thickness function 2 M6s 

 
MNx: model with variable thickness in x direction. 
MNs: model with variable thickness in s direction. 

B.c1=CCCC, B.c2=SSSS and B.c3=CSCS (x=0, a are clamped, s=0,b are simply supported). 
, in thickness function, is called thickness parameter that varies between -0.4 and 0.4 

 

Thickness function 1 is ( ) ( )2

0 2
x xh x h 1 1 6 6

aa
aé ù= + + -ê ú

ë û
 

 

Thickness function 2 is ( ) ( )2

0 2
s sh s h 1 1 6 6

bb
aé ù= + + -ê ú

ë û
 

 

Table 8: General characteristics for the studied models. 
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3.2 Vibration analysis  

In this section, vibration of circular and parabolic cylindrical panels having variable thicknesses 
along their circumferences or axes is studied. Three sets of the models with circular profile and also 
three more sets of the models with parabolic profile are constructed. Besides, each set has two sub-
sets of the models with variable thicknesses. One subset is corresponding to the models having vari-
able thicknesses along their circumferences (represented by MNs), while the other subset is includ-
ing the models with variable thicknesses along their axes (represented by MNx). For each of the 
subsets, three cases for the boundary conditions are considered. General characteristics for all inves-
tigated models are introduced in Table 8. Variation of frequency parameter against thickness pa-
rameter	 α  is presented in Tables 9-11 for the case of circular models. Frequency parameter for the 
models having a variable thickness along their axis varies in a manner completely reverse to that of 
the models having variable thickness along their circumference for the BC1 boundary conditions.  
  

( ) ( )2 3
0 11 11 1 0 21 12

0.5
, [12 1 ]i ia h D D E hl w r J J= = -  

Table 9: Variation of natural frequency parameter for M1x and M1s models. 

a  Model ID: M1 

0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 λ Boundary conditions 

13.538 13.448 13.337 13.20313.10412.87112.67112.448 12.200 λ  

BC1 

12.296 12.493 12.698 12.90713.12013.33413.54613.754 13.953 λ  

15.123 15.031 14.935 14.72214.65014.47214.23313.880 13.610 λ  

14.440 14.511 14.568 14.61614.65514.68914.71714.741 14.763 λ  

17.496 17.634 17.775 17.91718.06418.20218.19618.138 18.039 λ  

18.213 18.188 18.111 18.01917.99217.79017.65317.500 17.330 λ  

18.046 18.132 18.193 18.23118.24418.23318.34118.474 18.598 λ   

18.250 18.239 18.244 18.22918.20918.12818.04017.923 17.774 λ   

6.581 6.473 6.371 6.273 6.177 6.084 5.990 5.895 5.797 λ   

6.588 6.483 6.380 6.278 6.177 6.075 5.969 5.856 5.743 λ   

7.969 8.079 8.171 8.244 8.309 8.324 8.324 8.293 8.224 λ   

7.856 7.964 8.084 8.212 8.318 8.490 8.635 8.783 8.929 λ  BC2 

12.365 12.428 12.446 12.39112.31112.29712.25612.214 12.169 λ   

12.227 12.276 12.307 12.31812.30812.26112.21112.117 11.984 λ   

12.583 12.510 12.479 12.51812.54312.55012.53712.499 12.431 λ   

12.436 12.478 12.512 12.53712.55012.55012.53312.496 12.431 λ   

7.725 7.644 7.574 7.513 7.461 7.415 7.375 7.339 7.304 λ   

8.308 8.079 7.850 7.624 7.461 7.179 6.941 6.731 6.504 λ   

8.896 9.003 9.089 9.161 9.232 9.242 9.245 9.220 9.158 λ   

9.017 9.065 9.120 9.182 9.250 9.322 9.398 9.476 9.554 λ  BC3 

14.592 14.657 14.731 14.81014.84414.97915.00714.989 14.939 λ   

15.322 15.199 15.020 14.82614.79414.38514.13613.864 13.569 λ   

14.694 14.782 14.860 14.92214.97014.99915.06015.134 15.193 λ   

15.361 15.255 15.170 15.06514.97114.79514.62614.432 14.208 λ   
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In addition, it is observed that variation of first frequency parameter against the thickness parame-
ter is linear upwards or downwards for both of the models having variable thickness along their axis 
or circumference for the BC1 boundary conditions. 

 

( )

3
2 1 00

11
11 21 12

,
12 1i i

E hh
a D

D
rl w

J J
= =

-
 

Table 10: Variation of natural frequency parameter for M2x and M2s models 

 

a  Model ID: M2 

0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 λ 
Boundary 
conditions 

14.87214.854 14.822 14.776 14.64314.61914.56 14.47814.379 λ  

BC1 

14.52814.569 14.571 14.583 14.64414.66114.69214.72314.766 λ  

20.07719.942 19.772 19.570 19.11219.06218.75218.40218.007 λ  

17.54317.878 18.245 18.68 19.11319.48119.54819.66219.882 λ  

21.47521.666 21.837 21.990 21.91722.24322.34122.42122.478 λ  

22.14422.082 22.040 21.976 21.90921.69721.55321.40721.223 λ  

24.07224.146 24.197 24.227 24.23524.22024.18024.11424.017 λ  

23.9 24.098 24.168 24.220 24.23424.21624.16324.07023.937 λ  

8.842 8.927 8.998 9.0512 9.07599.098 9.087 9.046 8.971 λ  

8.862 8.891 8.947 8.992 9.062 9.147 9.223 9.308 9.395 λ  

11.92211.693 11.469 11.248 11.02710.80710.58510.35710.121 λ  

11.91511.693 11.470 11.254 11.02510.79410.54710.29210.024 λ  BC2 

15.46515.501 15.522 15.529 15.49715.48615.43115.34715.229 λ  

15.03115.382 15.530 15.521 15.49315.42815.35 15.26315.133 λ  

15.72415.891 16.027 16.130 16.19516.22116.20016.12715.989 λ  

15.08715.112 15.399 15.795 16.18916.57316.94317.29417.618 λ  

10.18610.266 10.331 10.379 10.38810.41610.40010.35510.275 λ  

10.64510.553 10.487 10.427 10.39210.33910.30510.28610.272 λ  

13.19312.951 12.719 12.499 12.24712.08111.88011.68211.485 λ  

13.62613.272 12.937 12.581 12.24211.89911.55211.19510.835 λ  BC3 

16.41016.574 16.707 16.806 16.86916.89216.86916.79416.656 λ  

15.65816.011 16.375 16.734 16.87217.39717.18316.95916.705 λ  

17.59817.663 17.712 17.745 17.75717.74817.71417.65017.548 λ  

18.44318.293 18.126 17.947 17.74817.65318.02918.38618.719 λ   
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Tables 9 to 11 show the variation of frequency parameter against thickness parameter for circular 
cylindrical shells, when their boundary conditions are of BC2 or BC3 types. In comparison with the 
results explained for the case of the BC1 boundary condition, the frequency parameter varies at the 
same manner against thickness parameter for the models having variable thickness along their axis 
and the models having variable thickness along their circumference, when the boundary conditions 
are of either BC2 or BC3 types.  
 From the results summarized in Tables 9 to 11, it is observed that with increase in the value of 
C/b for the models, frequency parameter is also increased.  
 

a  Model ID: M3 

0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 λ 
Boundary 
Conditions 

16.421 16.504 16.57816.64416.70116.75216.799 16.840 16.878λ  

BC1 

17.217 17.084 16.95216.82316.69616.57216.448 16.324 16.195λ  

20.077 19.981 19.85019.68419.54319.24618.972 18.658 18.305λ  

18.440 18.789 19.14619.50719.56520.21920.583 20.890 21.196λ  

25.219 25.520 25.78725.85525.90825.91625.909 25.876 25.817λ  

25.930 25.976 25.99925.99825.93925.90925.816 25.608 25.337λ  

 25.57 25.692 25.79926.05626.24226.50626.694 26.855 26.981λ   

26.644 26.577 26.48326.36426.24826.04425.843 25.683 25.506λ   

10.013 10.078 10.12910.16610.18710.18810.167 10.120 10.042λ   

10.193 10.177 10.17310.17710.19010.21010.233 10.258 10.283λ   

15.118 15.204 15.21715.14514.99614.79014.547 14.277 13.985λ   

14.525 14.806 15.04715.18115.12914.91714.619 14.271 13.883λ  BC2 

16.822 16.593 16.41116.28216.19516.12416.042 15.927 15.761λ   

17.017 16.741 16.51216.39116.18216.66316.942 17.248 17.555λ   

19.251 19.276 19.28019.26519.23019.16619.076 18.952 18.787λ   

19.292 19.311 19.30819.28319.23319.15419.043 18.893 18.696λ   

11.815 11.877 11.92411.95411.96611.95611.923 11.862 11.767λ   

12.690 12.490 12.30412.13211.97011.81811.674 11.535 11.471λ   

16.047 16.152 16.21116.21716.16216.04715.882 15.679 15.450λ   

15.578 15.905 16.15416.34316.26016.12115.727 15.266 14.762λ  BC3 

18.308 18.015 17.74917.51517.47517.14316.982 16.810 16.603λ   

18.934 18.475 18.04717.68817.50317.56917.777 18.030 18.291λ   

21.214 21.276 21.31521.33121.32121.28521.216 21.111 20.960λ   

22.316 22.089 21.84921.59521.32421.03420.721 20.383 20.012λ   

( )

3
2 1 00

11
11 21 12

,
12 1i i

E hh
a D

D
rl w

J J
= =

-
 

Table 11: Variation of natural frequency parameter for M3x and M3s models. 
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In Tables 12 to 14, variation of frequency parameter against thickness parameter (α), for parabolic 
models is presented. Similar to the results for circular models, it is observed herein also that with 
any increase in the value of C/b for the models with parabolic profile, frequency parameter increas-
es. The tendencies of the variation of frequency parameter for the models having parabolic profile 
are the same as those for the models having circular profile. Nevertheless, frequency parameter for 
the parabolic models is greater than that for the circular models, as confirmed also in Cheung and 
Cheung (1972). 
 

a  Model ID: M4 

0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 λ 
Boundary 
Conditions 

13.648 13.556 13.471 13.30813.15112.97312.77112.545 12.295 λ

BC1 

12.416 12.620 12.649 13.04413.18113.48013.69613.908 14.111 λ

15.250 15.011 14.946 14.88414.83614.35614.11413.960 13.787 λ

14.680 14.746 14.723 14.84314.87814.90814.93314.955 14.974 λ

17.683 17.816 17.923 18.08918.22718.31518.27418.206 18.108 λ

18.353 18.382 18.363 18.28918.21118.05917.92117.767 17.596 λ

18.141 18.224 18.256 18.31818.33918.36418.49818.626 18.744 λ 

18.525 18.462 18.403 18.37718.34218.28818.19518.080 17.931 λ 

6.7155 6.606 6.486 6.405 6.309 6.215 6.120 6.026 5.927 λ 

6.720 6.615 6.451 6.409 6.308 6.205 6.099 5.990 5.8735 λ 

8.081 8.191 8.245 8.356 8.418 8.436 8.437 8.405 8.336 λ 

7.966 8.076 8.142 8.324 8.441 8.602 8.748 8.896 9.043 λBC2 

12.459 12.511 12.526 12.52912.47712.43212.38712.343 12.297 λ 

12.365 12.414 12.420 12.45612.44512.41112.34912.255 12.121 λ 

12.729 12.653 12.646 12.61112.63612.64312.63012.592 12.523 λ 

12.528 12.570 12.591 12.63012.64412.64412.62712.590 12.526 λ 

7.859 7.777 7.685 7.645 7.592 7.545 7.504 7.467 7.432 λ 

8.440 8.209 7.871 7.756 7.592 7.309 7.086 6.861 6.633 λ 

9.005 9.109 9.184 9.270 9.321 9.350 9.355 9.328 9.266 λ 

9.122 9.170 9.229 9.290 9.359 9.432 9.508 9.587 9.666 λBC3 

14.736 14.798 14.885 14.94415.02515.09515.10215.084 15.033 λ 

15.413 15.335 15.269 15.06114.99914.52014.27114.000 13.705 λ 

14.790 14.879 14.913 15.02115.06515.10515.18315.254 15.310 λ 

15.498 15.347 15.312 15.16015.03614.89014.72214.528 14.305 λ 

( )

3
2 1 00

11
11 21 12

,
12 1i i

E hh
a D

D
rl w

J J
= =

-
 

Table 12: Variation of natural frequency parameter for M4x and M4s models. 
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α Model ID:M5 

0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 λ 
Boundary 
Conditions 

15.465 15.438 15.41415.32215.25415.16915.063 14.956 14.838λ  

BC1 

15.115 15.123 15.15315.18715.23415.28615.348 15.413 15.471λ  

21.463 21.272 21.04720.64120.06620.04219.966 19.795 19.295λ  

18.383 18.822 19.32519.66820.06220.44320.798 21.014 20.839λ  

21.939 22.17 22.31122.38922.49422.58622.652 22.728 22.732λ  

21.736 21.673 21.59321.51520.96220.61520.169 20.123 20.416λ  

25.456 25.534 25.54925.58325.57125.53525.477 25.381 25.254λ  

25.227 25.366 25.47025.54125.57725.57525.535 25.451 25.320λ  

9.4718 9.556 9.575 9.680 9.714 9.726 9.714 9.6724 9.595 λ  

9.466 9.513 9.51349.639 9.72359.794 9.882 9.985 10.071λ  

12.758 12.533 12.23712.08611.86411.64111.415 11.183 10.942λ  

12.745 12.527 12.41912.07311.84111.61711.362 11.118 10.846λ  BC2 

15.900 15.931 15.94315.95015.93415.90015.842 15.756 15.635λ  

15.772 15.937 15.94515.94815.92015.88415.822 15.739 15.616λ  

16.436 16.593 16.63316.81816.88016.90216.880 16.805 16.668λ  

15.471 15.672 16.08116.48716.88717.27517.648 17.999 18.323λ  

10.778 10.858 10.90210.97010.99911.00710.992 10.944 10.864λ  

11.197 11.123 11.07511.02210.99110.96510.954 10.946 10.941λ  

14.041 13.798 13.59313.34013.12312.91212.706 12.502 12.297λ  

14.574 14.155 13.83113.45013.11912.76112.406 12.052 11.687λ  BC3 

17.339 17.255 17.39717.48117.54317.56517.543 17.471 17.336λ  

16.376 16.754 17.05917.26917.54317.97117.754 17.523 17.288λ  

18.053 18.111 18.13618.18118.18818.17518.137 18.070 17.966λ  

18.758 18.614 18.45418.28018.19718.24618.629 18.992 19.295λ   

( )

3
2 1 00

11
11 21 12

,
12 1i i

E hh
a D

D
rl w

J J
= =

-
 

Table 13: Variation of natural frequency parameter for M5x and M5s models. 
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aModel: M6 

0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 λ Boundary 
conditions 

16.99417.011 17.022 17.02617.02317.10317.20217.532 17.763 λ  

B.c1 

17.50117.321 17.251 17.14017.03716.94116.85016.761 16.670 λ  

21.92121.840 21.721 21.56321.36421.12620.84620.505 20.153 λ  

20.15020.577 20.998 21.12621.35022.26522.66623.046 23.397 λ  

25.50525.748 25.966 26.16726.34626.50726.64626.762 26.854 λ  

26.91426.806 26.675 26.52826.36026.17025.95625.715 25.442 λ  

27.32827.440 27.511 27.56227.57527.55527.50227.415 27.292 λ   

27.56427.668 27.730 27.77227.78327.75927.69627.588 27.429 λ   

10.60510.668 10.718 10.75210.77010.76810.74510.694 10.611 λ   

10.71710.717 10.727 10.74610.77410.80810.84610.887 10.929 λ   

15.96216.129 16.263 16.36116.51116.36416.13615.823 15.480 λ   

15.46415.803 16.145 16.47916.55316.39716.03515.644 15.225 λ  B.c2 

18.17717.845 17.521 17.20316.96016.65216.53616.447 16.315 λ   

18.18517.852 17.519 17.19517.01917.27417.60817.945 18.269 λ   

19.22119.223 19.208 19.17419.11919.04118.93718.799 18.622 λ   

19.16219.182 19.183 19.16419.12219.05418.95618.822 18.644 λ   

12.29612.355 12.399 12.42612.43512.42412.38912.325 12.229 λ   

13.05212.879 12.721 12.57412.43912.31312.19512.084 11.974 λ   

16.89917.052 17.172 17.25617.39417.27017.15716.942 16.651 λ   

16.41716.725 17.039 17.34717.44417.35317.14616.645 16.111 λ  B.c3 

19.61119.246 18.897 18.56718.28317.97717.74917.577 17.419 λ   

20.20019.705 19.218 18.74318.30918.17718.41718.706 18.991 λ   

21.25021.281 21.292 21.28121.24821.18921.09920.975 20.807 λ   

22.16321.957 21.736 21.50121.24820.97720.68320.364 20.013 λ  

( )

3
2 1 00

11
11 21 12

,
12 1i i

E hh
a D

D
rl w

J J
= =

-
 

Table 14: Variation of natural frequency parameter for M6x and M6s models. 
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From the obtained numerical results, the following observations can be summarized: 

 With increase in C/b (b is constant and C varies), frequency of all models (circular and parabolic 
profiles) is increased. With increase in C/b, arc length of both profiles will increase, and then 
weight of models increases. In addition, the increase of camber (C) will decrease radius of curva-
ture of shells. Increase in the weight of the models decreases the natural frequency and also de-
crease of the radius of curvature increases the natural frequency of models. Therefore, effect of the 
change in the curvature on the natural frequency is greater than the effect of change in the weight 
for studied models. The tendencies of variation of frequency parameter are the same for both cir-
cular and parabolic models. Nevertheless, for the models with the same values of C/b, the natural 
frequency in case of parabolic curvature is greater than that in case of circular curvature. This 
phenomenon may be due to the facts that; (1) local stiffness of parabolic models is greater than 
local stiffness of circular models and (2) weight of circular models is greater than parabolic models 
with the same C/b (because the arc length of circular profile is greater than the arc length of par-
abolic profile). 

 Effect of thickness variation along both directions on the natural frequency is studied. It was 
aimed to find out the difference between effect of thickness variation along direction with zero 
curvature (x direction) and effect of thickness variation along direction with nonzero curvature (s 
direction). It is observed that for the case of BC1 boundary condition, the frequency parameter 
variation for the models with variable thickness along their axis is in opposite tendency compared 
with the models having variable thickness along their circumference. 

 Effect of boundary condition on natural frequency is studied for three cases. It can be seen that 
the effect of boundary condition on natural frequency is greater than the effect of variable thick-
ness on natural frequency. Models with BC1 boundary condition have largest natural frequency 
and models with BC2 boundary condition have lowest natural frequency. In addition, boundary 
condition changes the manner of frequency parameter variation against the thickness parameter. 
For example, for the BC1 type of boundary condition, frequency parameter varies linearly against 
thickness parameter but for the BC2 and BC3 types of boundary condition, frequency parameter 
varies nonlinearly against thickness parameter. 

 
 

3.3 Effect of variable thickness on the mode shapes 

Eigen vectors of the Equation 13 are unknown coefficients of the displacement functions. By finding 
these unknown coefficients, the relevant mode shapes can be plotted. The effect of thickness param-
eter on the first four mode shapes is studied herein for the models M5s and M5x (both models have 
parabolic profiles). Figure 3 shows the effect of thickness parameter on the first four mode shapes 
for the model M5x (the parabolic cylindrical shell with variable thickness along x axis). In general, 
for the first and third modes, the mode shapes visually are similar to each others for different values 
of the thickness parameter. For negative (-) and positive (+) values of the thickness parameter ( ), 
the second and fourth modes have equal numbers of half waves but the way the half waves are ap-
peared is opposite. Figure 4 shows the effect of thickness parameter on the mode shapes for the M5s 
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model (the parabolic cylindrical shell with variable thickness along s axis). As can be observed, the 
thickness parameter does not have any significant effect on the mode shape for M5s model. 
 

 Mode number 
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Figure 3: Effect of thickness parameter ( ) on the mode shapes for the parabolic model with 

0.15 (Model M6s). 
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Figure 4: Effect of thickness parameter ( ) on the mode shapes for the parabolic model 
with 0.15	(Model M6x). 
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4 CONCLUSIONS 

An approximate analysis method for investigating the free vibration behavior of circular and para-
bolic cylindrical shells having variable thickness along their axis or circumference is presented. A 
finite element method based on B-spline functions is further extended to find out the natural fre-
quencies and corresponding mode shapes for the cylindrical shells with variable radii of curvature 
and non-uniform thicknesses. Usefulness and accuracy of the present method is demonstrated 
through comparison of the results for a variety of cases. It is observed that frequency parameter for 
circular models vary in the same way against thickness parameter as that for parabolic models. 
Moreover, natural frequency of cylindrical models with a parabolic profile is slightly greater than 
that of cylindrical models with a circular profile. 
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