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Abstract 
This paper aims to conduct a comparative study on four different 
models of effective field and effective medium for modeling propa-
gation of plane elastic waves through the composites containing 
spherical particles with random distribution. Effective elastic 
properties along with the normalized phase velocity and attenua-
tion of the average wave was numerically evaluated by the models. 
The plane incident wave was considered longitudinal to get the 
results. The numerical analyses were performed on four types of 
composites in the range of low to intermediate frequency and 
different volume fractions. Judgment about this comparative study 
is done based on physical and theoretical concepts in the wave 
propagation phenomenon. The obtained results provide a good 
viewpoint in using different models for studying propagation of the 
plane elastic waves in various particulate composites. 
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Particulate composite, Random media, Wave propagation, Spheri-
cal inclusion. 
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1 INTRODUCTION 

Composite materials have found numerous applications in various industries. These materials have 
become interesting because their elastic and strength properties can be designed for different loading 
conditions and because they reduce weight of the structure considerably. Although fibrous compo-
sites have marvelous advantages over other composite materials, their rather expensive costs have 
led to look for other types of materials including particulate composites (Kamat et al. 1989). Major 
use of these materials can be found in aerospace structures such as commercial and military air-
crafts as well as spacecrafts. Identification of the propagation behavior of the elastic waves in these 
composites will contribute to detect cracks and defects by non-destructive tests. 

Propagation of waves in heterogeneous media causes scattering such that makes phase velocity 
and attenuation of the coherent wave frequency-dependent. Final dynamic response of the medium 
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can be given by a complex wave number which indicates propagation of the coherent wave in the 
equivalent homogeneous medium. 

Foldy (1945) and Lax (1951) investigated multiple scattering of the waves from point scatter-
ers.They estimated the complex wave number of the coherent wave based on volume fraction of the 
particles and forward far field scattering amplitude in a single particle wave scattering problem. 
The achievements of these researchers were further improved by Waterman & Truell (1961). Back-
ward scattering amplitude and forward amplitude in the single scattering problem have been used 
in the proposed approach to estimate the behavior of multiple scattering. 

Lloyd and Berry (1967) developed the recent model and demonstrated that the extracted equa-
tions of Waterman-Truell bear an integration error. They found the wave number of the heteroge-
neous medium by using the approach of energy density. Their final equations contained an addi-
tional integral term in comparison with the model of Waterman-Truell and provided somewhat 
more reliable results in many systems. 

There are various contributions based on the abovementioned models for studying the effects of 
interfaces. Datta et al. (1988) analyzed propagation of plane longitudinal and shear waves in com-
posites containing random distribution of spherical inclusions via Foldy’s theory. Sato & Shindo 
(2003) examined multiple scattering of longitudinal and shear elastic waves in a composite with 
randomly distributed particles with graded interfacial layers. The effects of viscoelastic interphase 
on dynamic properties of these composites were studied by Wei and Haung (2004). The numerical 
results reveal that viscosity of the interface has a noticeable effect on effective elastic modules and 
effective wave number. They also showed that the dissipation effect of interphase is the biggest at 
the low frequency range, while the effect of multiple scattering becomes dominant at the high fre-
quency range. 

These methods show an acceptable accuracy in modeling the multiple scattering phenomena at 
small particles volume fractions and low frequency regime. However, it should be noted that these 
methods do not offer a good estimation of the final static specifications of a heterogeneous medium 
at zero frequency range. Thus, it is rather impossible to guarantee accuracy of their results at low 
frequencies. 

Varadan et al. (1982, 1985) developed T-Matrix method in multiple scattering of the waves us-
ing quasi-crystalline estimations and introducing a pair-correlation function. A similar work was 
launched by Mal & Bose (1974) who analytically studied the scattering of the plane wave by spher-
ical elastic inclusions which were randomly distributed within an infinite matrix. They found prop-
agation characteristics of the average wave based on a statistical approach by introducing of a pair-
correlation function and quasi-crystalline approximation. The effect of imperfect bonding between 
spherical particles and medium of the surrounding matrix has been investigated during this work. 
Finding the correlation function between inclusions in multiple scattering of the waves in two-phase 
media has been subject of studies. Some examples in this regard are the research works conducted 
by Marco and Willis (1998) Marco (1999) and Liu (2008). Willis (1980) formulated the scattering 
problems in elastodynamics in terms of integral equations. Finding the pair-correlation function for 
dense media is one difficulty of the abovementioned methods. The effective elastic constants in the-
se cases will be completely dependent on how these functions are determined.  



 M. Rahimzadeh et al. / A Comparative Study on Propagation of Elastic Waves in Random Particulate Composites  1567 

Latin American Journal of Solids and Structures 11 (2014) 1565-1590 
 

Berryman (1980) derived effective static properties using elastic wave scattering theory. His solu-
tion was set the scattered field equal to zero in order to finding the effective properties. The ob-
tained results demonstrated that this method has a higher accuracy than the one developed by 
Kuster & Toksoz (1974). The resultant accuracy of this approach is compared with that of other 
static self-consistent models such as Hill (1965) and Budiansky (1965). 

It can be declared that one of the first classic self-consistent analyses in the field of effective me-
dium methods was introduced by Sabina and Willis (1988), which also provides appropriate results 
in high volume fractions. In this method, the phase velocity and attenuation of the coherent wave is 
obtained in an iterative process. Sabina and Willis demonstrated that the obtained self-consistency 
generate acceptable answers to determine effective dynamic properties just when wavelength of the 
elastic waves is at least four times that of radius of spherical inclusions. 

Kim et al. (1995) presented an estimation of the effective dynamic properties and effective densi-
ty which is similar to the coherent potential approximation in alloy physics. The obtained theoreti-
cal results are closer to the Kinra’s experimental results as compared to Ying & Truell (1956) re-
sults. Both of these methods show elastic properties similar to the static analysis results of Hill and 
Budiansky. 

There are various micromechanical methods for estimation of static elastic moduli of the compo-
sites, for example self-consistent, generalized self-consistent and Mori-Tanaka methods. Although all 
these techniques provide acceptable results at low volume fractions, Christensen (1990) demonstrat-
ed that only the generalized self-consistent method is able to give acceptable results at great volume 
fractions. Yang (2003) developed this model for studying multiple scattering of the plane longitudi-
nal and shear waves in particulate composites of random distribution. He also showed that this 
model offers better results in dense composites in comparison with the effective field methods. 

Kanaun and his colleagues (2004, 2005, 2007) extracted scattering equations of longitudinal and 
shear elastic waves in composite materials containing spherical particles that are distributed ran-
domly. They showed that each of these methods has some advantages over the others. 

Different works have been done in the field of experimental evaluation of plane elastic wave 
propagation in particulate composites. Kinra et al. (1982, 1997) experimentally studied propagation 
of ultrasonic elastic waves in composites containing spherical particles which are distributed ran-
domly in the matrix medium. Layman et al. (2006) measured phase velocity and attenuation of the 
longitudinal and shear waves in these composites. By comparing the results obtained with two theo-
retical models of Waterman-Truell and generalized self-consistent they showed that both models 
perform almost similarly, though the generalized self-consistent model is more accurate in higher 
volume fractions. 

The main objective here is to examine propagation of the longitudinal elastic waves in the par-
ticulate composites which contain stiff, soft, light and heavy spherical inclusions in addition to 
compare different approaches in this regard. For this purpose, four methods namely Foldy, Water-
man-Truell, generalized self-consistent and Sabina-Willis were compared with each other for solving 
the problem. 
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2 WAVE PROPAGATION THROUGH AN INFINITE MEDIUM WITH SPHERICAL 

HETEROGENEITY 

When a pressure wave impinges on the elastic surface of heterogeneity, two longitudinal and shear 
waves are reflected from the surface outward the heterogeneity, while two other waves will be prop-
agated inside the heterogeneity. Figure 1 depicts schematic of this problem. In equation (1), it can 
be seen that the physical and mechanical specifications of the matrix medium are denoted by sub-
script 2, while the spherical heterogeneity is labeled with subscript 1. Moreover, the functions of 
potential, displacements and stresses related to incident wave, reflected wave and the wave refract-
ed into the heterogeneity are shown with superscripts i( ) , r( )and (f ) , respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1   schematic illustration of P wave diffraction by a spherical inclusion. 

 
Equation of the incident plane longitudinal wave which propagates in the positive z-direction is 

as below: 
 

ϕ i( )= ϕ0 e
i k2z-ωt( )= ϕ0 e

-iωt 2n+1( )
n=0

∞

∑ in jn k2r( )Pn cosθ( )  (1) 

 
Where, k2  represents the longitudinal wave number in the matrix medium and ω  denotes circular 
frequency of the incident wave. When the plane elastic wave propagates toward the z-direction, the 
potential and displacement functions will be independent of φ  in spherical coordinates. The poten-
tial functions are given below for the two waves reflected outward the heterogeneity: 
 

ϕ r( )= An hn
1( ) k2r( )

n=0

∞

∑ Pn cosθ( )e-iωt
 

 

(2) 
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χ r( )= Bn
n=0

∞

∑ hn
1( ) K2r( )Pn cosθ( )e-iωt  (3) 

 
And for two waves refracted toward inside the heterogeneity: 
 

ϕ f( )= Cn jn k1r( )
n=0

∞

∑ Pn cosθ( )e-iωt
 

 

(4) 
 

χ f( )= Dn
n=0

∞

∑ jn K1r( )Pn cosθ( )e-iωt  (5) 

 
In the abovementioned equations, k ,k ,K ,K1 2 1 2  are the longitudinal and shear wave numbers of 1 
and 2 media. The unknown coefficients of An ,Bn ,Cn ,Dn  are also determined by considering bounda-
ry conditions. The boundary conditions in the matrix and heterogeneity interface (i.e.r =a ) are 
continuity of stresses and displacements which is given as below: 
 

ur
i( )+ur

r( )=ur
f( )

 
 

(6) 
 

( ) ( ) ( )i r fu +u =uq q q  
 

(7) 
 

σrr
i( )+σrr

r( )= σrr
f( )

 
 

(8) 
 

σrθ
i( )+σrθ

r( )= σrθ
f( )  (9) 

 
In the matrix medium, the equations of displacements and stresses are stated as below due to prop-
agation of the incident wave in addition to the waves reflected from surface of the heterogeneity as 
follows: 
 

ur 2=
1
r

ϕ0Q71
1( )+AnQ71

3( )+BnQ72
3( )( )

n=0

∞

∑ Pn cosθ( )
 

 

(10) 
 

uθ2=
1
r

ϕ0Q81
1( )+AnQ81

3( )+BnQ82
3( )( )

n=0

∞

∑
dPn cosθ( )
dθ  

 

(11) 
 

σrr 2=
2µ2
r 2

ϕ0Q11
1( )+AnQ11

3( )+BnQ12
3( )( )

n=0

∞

∑ Pn cosθ( )
 

 

(12) 
 

σrθ 2=
2µ2
r 2

ϕ0Q41
1( )+AnQ41

3( )+BnQ42
3( )( )

n=0

∞

∑
dPn cosθ( )
dθ

 (13) 
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Similarly, for the medium 1, displacements and stresses equations due to propagation of the 
waves refracted into the sphere are listed as below: 
 

ur1=
1
r

CnW71
1( )+DnW72

1( )( )
n=0

∞

∑ Pn cosθ( )
 

 

(14) 
 

uθ1=
1
r

CnW81
1( )+DnW82

1( )( )
n=0

∞

∑
dPn cosθ( )
dθ  

 

(15) 
 

σrr1=
2µ1
r 2

CnW11
1( )+DnW12

1( )( )
n=0

∞

∑ Pn cosθ( )
 

 

(16) 
 

σrθ1=
2µ1
r 2

CnW41

1( )+DnW42

1( )( )
n=0

∞

∑
dPn cosθ( )
dθ

 (17) 

 
The relations between internal terms of the abovementioned equations are listed in Appendix 1. 

 
3 SELF-CONSISTENT METHODS IN MULTIPLE SCATTERING OF WAVES IN MUL-

TIPHASE MEDIA 

Since it is impossible to accurately solve the problems related to multiple scattering in random me-
dia, approximate methods are expected to be the main approach for solving these problems. The 
methods are based on simple hypotheses which reduce the problem of multiple scattering and mu-
tual effects between heterogeneities to a simple scattering problem of single heterogeneity. This 
approach can be divided into two main categories, namely effective field methods and effective me-
dium methods. 
  
3.1 Methods of Effective Field 

This set of methods is based on the following hypotheses (Kanaun et al. 2005): 
• Each particle acts as a single particle inside the primary matrix, 
• The effect of other surrounding particles is considered as an effective field which is applied on 

that particle. 
The second hypothesis is the base of different works in this field. The simplest approach in this 
regard is that the effective field is considered as a plane wave which is identical for all the particles. 
This approximation is usually known as quasi-crystalline estimation. The models developed by 
Foldy and Waterman-Truell are among the most famous methods of the effective field. 
 
3.2 Methods of Effective Medium 

Effective medium methods are based on two following assumptions (Kanaun et al. 2004): 
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• Each particle in a heterogeneous medium acts as a single particle inside a homogeneous me-
dium, such that this homogeneous medium will get the effective properties of the heteroge-
neous medium. 

• Average wave field is matched with the wave field propagated inside the homogeneous medi-
um (self-consistency condition). 

In this kind of methods, there are also some additional editions for the first hypothesis of the prob-
lem. For instance, behavior of each particle in the heterogeneous medium is modeled as a single 
particle with a layer of matrix which is embedded in the effective homogeneous medium. The mod-
els of Sabina-Willis and generalized self-consistent are some of these methods. 
 
4 FORMULATION 

4.1 Foldy’s Model 

The first work based on the compatible wave treatments in the field of multiple scattering of scalar 
waves in media containing elastic and isotropic scatterers with random distribution was directed by 
Foldy. He demonstrated that the average wave field in a medium which contain randomly distrib-
uted scatterers satisfies the wave equation in a continuous medium without scatterers. However, the 
propagation constant of this equivalent medium differs. The complex propagation constant finally 
proposed by Foldy for a medium with n0  scatterers per unit volume as below: 
 

k
2
= k2

2+ 4πn0f 0( )  
 

(18) 

K
2
=K2

2+ 4πn0g 0( )  (19) 

 
Where, k2  and K2  represent propagation constants of P  and S  waves, while ( )0f  and ( )0g  de-
note forward far field scattering amplitude of longitudinal and shear waves, respectively. 
 
4.2 Waterman-Truell Model (WT) 

Waterman & Truell introduced an approach in 1961 for calculation of the total effective field and 
properties of wave propagation in a medium containing randomly distributed scatterers. They ex-
pressed these parameters versus the number of scatterers per unit volume along with the forward 
and backward longitudinal and shear scattered wave amplitude by a single inclusion. They devel-
oped a statistical averaging process in order to estimate the wave propagation constant. In fact, 
they found properties of an equivalent homogeneous medium which has an effective complex wave 
number by using physical and mechanical properties of the original heterogeneous medium. The 
following equations are proposed for longitudinal and shear waves by the model, respectively: 
 

k

k2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

= 1+
2πn0f 0( )
k2
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
-
2πn0f π( )
k2
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 (20) 
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K

K2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

= 1+
2πn0g 0( )
K2
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
-
2πn0g π( )
K2
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 (21) 

 
Where, a  is radius of the identical scatteres. Equations 20 and 21 are also used for the longitudinal 
and shear waves, respectively.  
 The Waterman-Truell model ignores the correlation between the inclusions, so this model can be 
used only if density of the scatterers is small in the matrix medium. Therefore, this theory would be 
unable to describe accurately the problem of dens mediums. 
 
4.3 Dynamic Generalized Self-consistent Model (DGSCM) 

Yang (2003) proposed his dynamic generalized self-consistent model for the two-phase composites 
considering longitudinal and shear propagated waves in the presence of cylindrical and spherical 
inclusions. Figure 2 illustrates the intrinsic geometry that this model is based on. A random distri-
bution of the identical spherical inclusions with radius a  embedded in an infinite isotropic matrix 
was considered for explanation of the model. Moreover, it was assumed that λ1 , µ1  and ρ1  are 
Lame constants and mass density of the scatterers, while λ2 , µ2  and ρ2  are those of the matrix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2   Sketch of dynamic generalized self-consistent model. 
 

In the schematic view displayed, x,y,z( )  shows the Cartesian coordinate system and r,θ,φ( )  rep-

resents the polar Spherical coordinate system. Meanwhile, components of the displacement vector in 
r and θ  directions are denoted by ur  and uq  respectively. The governing equation in the problem 
can be given as below: 
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λ+ 2µ( )∇∇.u -µ∇×∇×u= ρ ∂
2u
∂t 2

 (22) 

 
In this model, the spherical scatterer with radius a  is embedded in a spherical shell of the matrix 
with outer radius b . An infinite medium with the effective Lame constants of λ  and µ , and 

the effective mass density of ρ  includes this system. The relation between assumed radius of b  

and particles volume concentration called c  is given below: 
 

c=
a3

b3
 (23) 

 
In the composite materials with a small difference between constituents density, one may use the 

mean density instead of the effective density as below: 
 

ρ =cρ1+ 1-c( )ρ2  (24) 
 

However, for the composite materials with high density contrast, the effective density will de-
pend on the frequency of incident wave. In this case, the equation of effective density proposed by 
Sabina & Willis can be utilized. 

When the incident wave is a plane longitudinal one, components of the displacement vectors and 
the stress tensor can be expressed as ru ,uq  and rrs , rqs  respectively. Furthermore, the stress com-
ponents can be found from the related displacement components through the stress-displacement 
relations: 
 

σrr
µ
=
λ
µ
1

r 2sinθ
∂
∂r
r 2ursinθ( )+ ∂∂θ ruθsinθ( )+ ∂

∂φ
ruφ( )⎡

⎣
⎢

⎤

⎦
⎥+ 2
∂ur
∂r  

 

(25) 
 

σ
rθ

µ
=
1
r

∂u
r

∂θ
+
∂u
θ

∂r
-
u
θ

r
 (26) 

 
Assuming a perfect bonding between the constituents and the matrix, the boundary conditions can 
be stated as the continuity of displacement and stress at the interfaces: 
 

ur 2 r,θ( )
r=a
= ur1 r,θ( )

r=a  
 

(27) 
 

uθ2 r,θ( )
r=a
= uθ1 r,θ( )

r=a  
 

(28) 
 

ure r,θ( )
r=b
= ur 2 r,θ( )

r=b  
 

(29) 
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uθe r,θ( )
r=b
= uθ2 r,θ( )

r=b  
 

(30) 
 

σrr 2 r,θ( )
r=a
= σrr1 r,θ( )

r=a  
 

(31) 
 

σrθ2 r,θ( )
r=a
= σrθ1 r,θ( )

r=a  
 

(32) 
 

σrre r,θ( )
r=b
= σrr 2 r,θ( )

r=b  
 

(33) 
 

σrθe r,θ( )
r=b
= σrθ2 r,θ( )

r=b  
 

(34) 
 

Substituting the total displacement field of the effective medium, matrix and inclusion in the 
boundary conditions, the following matrix equation is obtained for the case of plane longitudinal 
incident wave: 
 

P -P 2( ) - !P 2( ) 0

αQ -Q 2( ) - !Q 2( ) 0

0 P 1( ) !P 1( ) -P0

0 Q 1( ) !Q 1( ) βQ0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Amn
Cmn
′Amn
′Cmn
Dmn
Fmn
Amn
0

Cmn
0

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

= -

!P
α !Q
0
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Φmn
Xmn

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (35) 

 
By solving the abovementioned set of equations, the unknown coefficients can be found. Detailed 

descriptions of the parameters are stated in Appendix 2. The basic equations for defining propaga-
tion constants of the average wave in the effective medium can be stated as below: 
 

k j+1( )

k j( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

= 1+
2πn0f

j( ) 0( )
k j( )⎡
⎣

⎤
⎦
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

-
2πn0f

j( ) π( )
k j( )⎡
⎣

⎤
⎦
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

 
 

(36) 
 

K j+1( )

K j( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

= 1+
2πn0g

j( ) 0( )
K j( )⎡
⎣

⎤
⎦
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

-
2πn0g

j( ) π( )
K j( )⎡
⎣

⎤
⎦
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

 (37) 
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In which, the forward and backward scattering amplitudes for the case of longitudinal incident 
wave is given as below: 
 

f j( ) 0( )= -i( )n
n=0

∞

∑ A0n
j( )

 
 

(38) 
 

f j( ) π( )= i( )n
n=0

∞

∑ A0n
j( )

 
 

(39) 
 

g j( ) 0( )= -i( )n
2n=1

∞

∑ n n+1( )C1nj( )+C-1n
j( )⎡

⎣
⎤
⎦  

 

(40) 
 

g j( ) π( )= i( )n
2n=1

∞

∑ n n+1( )C1nj( )+C-1n
j( )⎡

⎣
⎤
⎦  

(41) 

 
These equations are solved in an iterative process to yield the required convergence. Meanwhile, 

the initial values are taken equal to those properties of the matrix material. 
 
4.4 Sabina-Will is Model (SW) 

Sabina & Willis tried to offer a simple self-consistent solution for dealing with the problem of wave 
propagation in heterogeneous media. This model considers a heterogeneous material which is com-
prised of a matrix and random distribution of n  types embedded inclusions. The matrix has densi-
ty of n+r 1 and a tensor of elastic moduli Ln+1 , and each inclusion of type r having density rr  and 
tensor of elastic moduli rL , respectively, such that r = , ,...,n1 2 . In addition, all inclusions of type 
r have the same size and shape. 
In a specific loading, the displacement field u  in the medium depends on the exact configuration of 
the heterogeneities. Thus, determination of the average displacement field u  will be considered 
instead of the exact displacement field because of the random distribution of the inclusions. Re-
sponse of the composite to any kind of loading obeys the equation of motion. In the absence of the 
body forces the equation of motion is: 
 

∇iσ= !p  (42) 
 
Where, stress σ  and momentum density p are related to strain e  and velocity as: 
 

σ= Le  
 

(43) 
 

p= ρ !u  (44) 
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Where, !u  is the velocity and ρ  stands for the mass density. The tensor of elastic moduli L  and 
the mass density ρ  are extracted as below versus position x  as: 
 

L x( )= Lr
r=1

n+1

∑ fr x( )
 

 

(45) 
 

ρ x( )= ρr
r=1

n+1

∑ fr x( ) (46) 

 
Where: 
 

fr x( )=
1;x ∈ material r

0; otherwise

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

 (47) 

 
By averaging from the equation above and following the analysis of Hill in the static analysis, it 

is found that: 
 

σ = Ln+1 e + cr Lr -Ln+1( )
r=1

n

∑ e
r
 

 

(48) 
 

p = ρn+1 !u + cr ρr - ρn+1( )
r=1

n

∑ !u
r
 (49) 

 
Where, cr  is the probability density function for the particles of typer . Therefore, the desired 

effective equations can be obtained if one could represent e
r
 and !u

r
 in terms of e  and !u . 

One simple approach to deal with this problem is to consider a single inclusion embedded in a ho-
mogeneous medium with the effective properties of the composite material. By using the two fun-
damental assumptions in the effective medium methods and based on the abovementioned equa-
tions, the effective elastic properties of a multiphase composite can be derived from the following 
equations: 
 

Leff = Ln+1+ crhr q( )hr -q( ) Lr -Ln+1( ) I +Sxr Lr -Leff( )⎡
⎣⎢

⎤
⎦⎥

r=1

n+1

∑
-1

 
 

(50) 
 

ρeff = ρn+1+ crhr q( )hr -q( ) ρr - ρn+1( ) I +Mxr ρr - ρeff( )⎡
⎣⎢

⎤
⎦⎥

r=1

n+1

∑
-1

 (51) 

 
The effective dynamic properties which are extracted from this model can be summarized as fol-

lows for a two-phase medium containing a random distribution of the spherical particles: 
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B= B2+
ch q( )h -q( ) B1 -B2( )

1+ 3 B1 -B( )εp 3B+ 4µ( )  
 

(52) 
 

µ= µ2+
ch q( )h -q( ) µ1 -µ2( )

1+ 2 µ1 -µ( ) 2µεp+ 3B+ 4µ( )εs⎡⎣ ⎤⎦ 5µ 3B+ 4µ( )⎡⎣ ⎤⎦  
 

(53) 
 

ρ= ρ2+
ch q( )h -q( ) ρ1 - ρ2( )

1+ ρ1 - ρ( ) 3- εp - 2εs( ) 3ρ( )  (54) 

 
Where the function h q( )  for the spherical inclusions is given as below: 

 

h q( )= 3 sin qa( )-qacos qa( )⎡⎣ ⎤⎦ qa( )3  (55) 

 
In which the wave number of q  is substituted with k  and K  in the longitudinal and shear inci-
dent wave, respectively. Moreover, the terms εp  and εs  are stated as below: 

 

εp = 3 1- ika( ) sin ka( )-kacos ka( )⎡⎣ ⎤⎦ e
ika( ) ka( )3  

 

(56) 
 

εs = 3 1- iKa( ) sin Ka( )-Kacos Ka( )⎡⎣ ⎤⎦ e
iKa( ) Ka( )3  (57) 

 
5 NUMERICAL ANALYSIS 

As we know in the wave propagation study, the scattering phenomenon may be caused by two fac-
tors, namely variation in the mass density or the elastic properties of the constituent phases. Thus, 
to illustrate the nature and general behavior of the composites, the constituents are chosen such 
that the effect of variations in mass density and elastic properties on the average wave field can be 
evaluated. So in the first set of considered composites, the mass density was taken the same for 
both phases, and the elastic constants of inclusions were taken first twice and another time half of 
the elastic constants of the matrix in two different cases. In the second set of assumed composites, 
the elastic constants of the both phases were taken the same, while the mass density was assumed 
to be twice and half of the mass density of the matrix medium. Properties of the considered compo-
site constituents are listed in Table 1. 
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Table 1   Mechanical properties of constituents. ( =  , B = , =  r m3
2 2 22.7 (g/cm ) 75.2 (GPa) 34.7 (Gpa)) 

 
Density 
(g/cm3) 

Bulk Modulus 
(GPa) 

Shear Modulus  
(GPa) 

 

ρ2  B2  µ2  Matrix 

ρ2  B2 2  µ2 2  Soft Inclusion 

ρ2  B22  2µ2  Stiff Inclusion 

2ρ2  B2  µ2  Heavy Inclusion (HD) 

ρ2 2  B2  µ2  Light Inclusion   (LD) 

 
It is appropriate to divide the elastic wave propagation investigation into three categories ac-

cording to the inclusion size and the incident wavelength. A dimensionless parameter of δ= λ a  is 
defined first which is indicative of the incident wavelength to radius of the spherical inclusion. 
Based on this definition, the dimensionless wave number is given as k2a= 2π δ . Three different 
frequency ranges can be studied. If wavelength of the incident wave is much larger than radius of 
the spherical heterogeneities ( δ>>1), then the incident wave will be located within the range of 
long wavelength or low frequency regime. Meanwhile, if the incident wavelength is close to size of 
the heterogeneities ( δ ≈ 1 ), then it is located within the range of intermediate wavelength or fre-
quency. In the last case, if this ratio is significantly small ( δ<<1), then the incident wave will be 
within the range of short wavelengths or high frequency regime. The desired range here in this 
study includes long to intermediate wavelengths which will be discussed in this section. 
Figure 3 depicts the variations in normalized phase velocity and attenuation of the longitudinal 
average wave in terms of dimensionless wave number and volume fraction of soft, stiff, light and 
heavy inclusions using the dynamic generalized self-consistent model.  
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Figure 3   Variation of normalized phase velocity and attenuation of P wave with the normalized frequency (c= 0.3 ) and volume concen-
tration (k a =2 1 ) using DGSCM. 
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As can be seen in Figure 3a, the normalized phase velocity in all cases is first decreased at low 
frequencies and then increased a bit. As long as frequency of the incident wave is located within 
range of low frequency or long wavelength, variations of the phase velocity versus the frequency can 
be ignored. Indeed, the composite material demonstrates a static behavior in a long wavelength 
regime. This can be attributed to the small scattering in the long wavelength. When frequency of 
the incident wave approaches to intermediate frequency or wavelength range, curve of the phase 
velocity will get an ascending trend. Therefore, greater variations can be seen in the phase velocity 
of the composite versus frequency. Moreover, the phase velocity of the average wave will be greater 
in composites containing stiff or light particles and will be smaller in composites containing soft or 
heavy particles in comparison with those of the matrix. This is because effective wave number is 
conversely related to squared elastic constants of the effective medium and directly related to 
squared mass density of the effective medium. 

Figure 3b illustrates the normalized attenuation versus dimensionless wave number. Variation in 
attenuation of the coherent wave is discussed in the composite material which contains soft inclu-
sions. The curve starts from zero point and takes an ascending trend by increasing the wave fre-
quency. It can be observed that the curve has numerous maximum and minimum points which can 
be assigned to resonance frequencies of the spherical inclusion. Kinra has showed that the wave 
propagation behavior in particulate composites is noticeably affected by resonances of the particles. 
It should be noted that the lowest resonance mode which can be inferred as the rigid-body oscilla-
tion cannot be seen in the composites containing considered soft and stiff particles because this 
mode appears when the difference between mass density of the heterogeneities and the matrix is 
significant. If not, the difference in the inertia force between the matrix and inclusions will be small 
and thus unable to excite the rigid-body resonance mode. As a result, the maximum and minimum 
points seen in the diagram are related to the resonances of higher modes, which are the elastic reso-
nance modes. This can be justified by the difference in stiffness of the two media. 

But in the presence of considered light or heavy particles, the first maximum point in the atten-
uation curve belongs to rigid-body oscillation of the spherical particle embedded in the medium 
according to strong contrast of mass densities. This resonance frequency creates a maximum point 
in the attenuation curve and initiates rise in the curve of phase velocity. These simultaneously 
changes can be explained by Kramers-Kronig relation. The dominant mechanism for attenuation of 
coherent wave in particulate composites is scattering into incoherent waves. And it can be occurred 
outside the low frequency range where δ ≈ 1  or δ<< 1 . So, as can be seen from the figure, attenu-
ation of all composite materials in k2a ≤ 0.5  is very small and even negligible in the range of low 
frequency. Meanwhile, the attenuation in the composite materials containing heavy particles is 
greater than the case of light particles, while this amplitude for soft particles is greater than that of 
stiff particles. This observation can be explained by this fact that due to small velocity of the elastic 
waves in soft or heavy materials, a greater contribution of the incident wave is scattered outward so 
that the amplitude of final wave will be much smaller. 

Figure 3c illustrates variation of the phase velocity for the average wave versus particles volume 
fraction. As evident from the curve, it is decreased by increasing the particles volume fraction in the 
presence of soft ones. This is because density remains unchanged by raising the volume fraction of 
soft particles but final stiffness of the composite material is reduced. In this case, the wave propaga-
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tion speed through the effective medium is decreased as compared to that of the matrix. An ascend-
ing trend will be seen in the curve of phase velocity with the same explanation if stiff particles exist. 
Thereby, the normalized phase velocity curve will be ascending and descending in the presence of 
light and heavy particles, respectively. All the curves of phase velocity begin from 1 in c= 0  which 
can be justified with respect to normalizing of the phase velocity against those of the matrix medi-
um. 

Figure 3d presents variation of the attenuation versus volume fraction of the constituent parti-
cles. It can be observed that the attenuation curve increases by raising the volume fraction of the 
particles, and then decreases again after reaching a maximum point. When the volume fraction of 
the particles is c= 0  or c= 1 , the attenuation is expected to be zero due to creating a homogene-
ous medium. This constraint is satisfied about the soft and stiff particles in which the mean density 
equation is utilized, but this constraint is not met at c= 1  for light and heavy particles. Further-
more, since the maximum spatial fluctuation in properties of the composites occurs in c= 0.5 ,  it is 
expected that a maximum point will exists somewhere near this value. The investigation was done 
for the frequency of k2a= 1 . The ratio of incident wave to radius of the spherical particles will be 
δ= 2π  in this case which is located within the range of the intermediate wavelength. In the compo-
site with soft particles, the maximum attenuation is created at c= 0.16  for k2a= 1 . Meanwhile, as 
clearly evident, the attenuation in all volume fractions for the composites with heavy particles will 
be greater than those containing the light ones. The same regime is seen for soft and stiff particles, 
in which the attenuation amplitude of the former is greater than that of the latter. 

Figure 4a shows variations of the shear modulus versus the dimensionless wave number for the 
considered composites. Trend of changes in the shear modulus of the effective medium in this figure 
in state of soft and stiff particles is similar with the trend explained in the curve of normalized 
phase velocity versus dimensionless wave number. It is expected that the normal shear modulus of 
the effective medium in the presence of stiff particles is greater than unit, while this value is pre-
dicted to be smaller than unit in the presence of soft particles. Regarding the composites with light 
and heavy particles, the effective shear modulus is expected not to change with the dimensionless 
wave number since the constituents elastic properties are the same. However, this is only seen at 
low frequency regime. 

Figure 4b shows variation of the shear modulus of effective medium versus volume fraction. One 
interesting point in all curves obtained from this model is that if the soft and stiff particles are in-
creased, then the elastic properties of the effective medium will become smaller and greater than 
those of the matrix, respectively. In the case of soft and stiff particles at c= 1 ,  the effective shear 
modulus become half and twice that of the matrix medium, respectively. This is in agreement with 
the initial assumption of elastic properties for the components. Nevertheless, the expectation for 
remaining the elastic properties unchanged by increasing the volume fraction of light and heavy 
particles is not met completely in this model and there are still some small variations in versus the 
volume concentration. A similar behavior is obtained in the curves of Figures 4c and 4d for bulk 
modulus of the effective medium. 

Variation of the normalized mass density of the effective medium as a function of the wave 
number are demonstrated in Figure 4e The effective mass density is constant and equal to unit for 
soft and stiff particles. However, about light and heavy particles, dominant behavior of the curve is 
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mainly ascending and descending, respectively. The effective density in both cases experiences just 
small variations in the range of low frequency and small volume fractions.  

Figure 4f shows the parameter in terms of volume concentration. It can be seen that increasing 
the volume fraction does not show any variation in the effective density of composite materials 
which contain soft and stiff particles. Moreover, prediction of an ascending and descending trend is 
consistent with the physical expectation of the problem for the presence of heavy and light parti-
cles, respectively. However, predicting the final mass density of the effective medium at c= 1  is not 
the same as the expected values accurately such that Re[ρ ρ2 ]= 0.43  and Re[ρ ρ2 ]= 1.67  are found 
for the light and heavy particles, respectively. 
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Figure 4   Variation of the effective elastic constants and effective density with the normalized frequency (c= 0.3 ) and volume concen-

tration (k a =2 1 ) using DGSCM. 

Figure 5 displays the numerical results of the normalized phase velocity and attenuation versus 
the dimensionless wave number at c= 0.15 . The results obtained with four models of Foldy, WT, 
SW and DGSCM are drawn next to each other for the purpose of comparison. Some interesting 
points can be made from these diagrams which will come in the following: All the models display a 
mutation rapid rise in the range of low frequency for the composites with heavy particles. This be-
havior which is seen in most of the composite with heavy particles is due to the rigid-body reso-
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nance of particles which was mentioned before. Although all the models demonstrate this phenome-
non properly, the DGSCM model predicts a much greater frequency of resonance.  

Meanwhile, as can be seen in attenuation curves of the other composites, the effective field mod-
els of WT and Foldy predict greater attenuation amplitude as compared to that of the effective 
medium methods of SW and DGSCM. Moreover, it can be concluded from comparing the four 
abovementioned models in all the attenuation curves that the models of SW, Foldy and WT predict 
similar values but different to the DGSCM model. About the SW model, it must be noted that the 
results are acceptable up to the frequency range of k2a= π 2 . As previously mentioned, the maxi-
mum propagated wavelength can be at least four times greater than radius of the reinforcement 
spherical particles. By looking at the curves of normalized phase velocity in this figure it can also be 
inferred that the effective medium methods of SW and DGSCM have assigned the boundary ranges 
of maximum and minimum values respectively, depending on type of the composite material except 
for the low frequency ranges. 
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Figure 5   Normalized phase velocity and attenuation of P wave versus dimensionless frequency predicted by different models for 
c= 0.15 . 
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Figure 6 depicts results of the normalized phase velocity and attenuation versus volume fraction 
at k a=2 1 . In this frequency, the wavelength is about 6.28 times greater than radius of the spherical 
particles which indicates location in the range of the intermediate wavelength. Since the greatest 
distinction between properties of the heterogeneous medium occurs at c= 0.5 , from the microstruc-
tural point of view, a maximum point is expected to be seen in the attenuation curve. Comparison 
of the models in this figure implies that the SW and DGSCM techniques have successfully attained 
a good estimation in this regard. But, the effective field methods are unable to predict the existence 
of this maximum point.  
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Figure 6   Normalized phase velocity and attenuation of P wave versus volume concentration predicted by different models for k a =2 1 . 

Attenuation of the coherent wave at the boundaries are other points under study which can be 
considered. Considering the homogenization of the medium and having no macroscopic randomness 
at c= 0  and c= 1 , zero attenuation is expected for all cases. All models satisfy this condition at
c= 0 . This condition is still satisfied at c= 1 in the DGSCM model for the composites with soft 
and stiff particles where the equation of mean density is utilized. However, for the composites which 
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contain light and heavy particles, this model approximately predicts zero wave attenuation. Moreo-
ver, all the models in the range of low frequency predict almost the same values. Studying the nor-
malized phase velocity versus volume fraction, it is properly evident that the DGSCM model pro-
posed more accurate values at the boundaries in comparison with the other models, while all the 
models can perform successfully in addressing the ascending and descending trend of the phase ve-
locity versus volume fraction. 

Figure 7 indicates variations of the shear and bulk modulus of the effective medium based on the 
effective medium models of SW and DGSCM in terms of the dimensionless wave number at 
c= 0.15 . As shown by the figure, both models provide a good consistency in prediction of the bulk 
modulus of the effective medium in low and intermediate frequency regime. The SW model properly 
predicts constants values of the effective dynamic properties at different frequencies in the compo-
sites which contain light and heavy particles. However, the model of DGSCM shows small varia-
tions for the composites with light particles and greater variations for those containing heavy parti-
cles in terms of frequency. Furthermore, the difference between these two models in prediction of 
the effective dynamic values of the composites containing soft and heavy particles is more signifi-
cant than those with stiff and light particles. 
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Figure 7   effective elastic constants versus dimensionless frequency predicted by DGSCM and SW models for c= 0.15 . 
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Figure 8 illustrates variations of the effective dynamic properties versus volume fraction of the 
constituent particles. As can be seen from the figure, the DGSCM model in the composites which 
contain stiff particles is exactly able to predict the expected final elastic properties. For example, 
this model demonstrates the normalized shear modulus at c= 1  for the composites with soft and 
stiff reinforcements equal to Re[µ µ2 ]= 0.5  and Re[µ µ2 ]= 2 , respectively, which are exactly the 
same expected values. But in the materials containing light and heavy particles in spite of the ex-
pectation, some variations in the effective dynamic constants are seen. The reverse case is observed 
for the SW model.  
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Figure 8   effective elastic constants versus volume concentration predicted by DGSCM and SW models for k a =2 1 . 
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6 CONCLUSIONS 

This paper aims to investigate propagation of the longitudinal elastic wave in the random particu-
late composites. The models of Foldy and WT were used from the set of effective field methods, 
while the models of SW and DGSCM were utilized from the set of effective mediums for sake of 
analysis and comparison. Four types of composites with different particles but the same matrix 
were considered. In two types of these composites, the mass density of the particles was taken equal 
to the mass density of the matrix, while their elastic constants were assumed to be half and twice 
those of the matrix accordingly. In the other two composites, elastic constants of the particles and 
the matrix were deemed the same, but mass density of the former was considered to be half that of 
the matrix one time and twice that of the matrix the other time.  

Variations of the phase velocity and attenuation along with the effective dynamic properties of 
these composites were explored in terms of volume concentration and dimensionless wave number 
by using the models. It can be inferred from the obtained results that the models behavior in com-
parison with each other is heavily dependent on properties of the composite constituents. The men-
tioned methods of effective medium in comparison to the methods of effective field are more capable 
of predicting a more consistent behavior with the expected physical phenomena.  

Meanwhile, comparing the four composite materials which were mentioned in the DGSCM mod-
el reveal some other interesting findings. The coherent attenuation in the composites containing 
heavy particles is considerably greater than other mentioned composites. Normalized phase velocity 
of the average wave provides the maximum and the minimum values in the case of using stiff and 
heavy reinforcements, respectively.   
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Other matrices in the equation (35) are defined via substitutions according to Table A.1. 
 

Table A.1   Definition of the unknown matrices 
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