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Boundary integral simulations of three-dimensional inviscid flows
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Abstract

In this article we describe a boundary integral method for calculating the incompressible
potential flow around arbitrary, lifting, three-dimensional bodies. By using Green theorems
to the inner and outer regions of the body and combining the resulting expressions we obtain
a general integral representation of the flow. The body surface is divided into small quadri-
lateral and triangular elements and each element has a constant singularities distribution
of sinks and dipoles. An internal constraint is used and the sink distribution is determined
by an external Neumann boundary condition. The application of Kutta’s condition is quite
simple; no extra equation or trailing-edge velocity point extrapolation are required. The
method is robust with a low computational cost even when it is extended to solve complex
three-dimensional body geometries. Calculations of the pressure coefficient, lift coefficient
and induced drag coefficient are computed by the boundary integral numerical simulations.
The boundary integral code developed here is verified by comparing the numerical predictions
with experimental measurements, analytical solutions and results of the lifting-line theory
and vortex-lattice method.

Keywords: boundary integral method, potential flow, three-dimensional body, pressure co-
efficient

1 Introduction

The field of computational fluid dynamics has made much progress in recent years. Compu-
tational methods for three-dimensional flows have been extensively used to solve problems in
aerodynamics. For many times a flow problem was solved using hydrodynamic potential the-
ory and such method has been found to agree well with experiment over a large range of flow
conditions. Even when potential results fail to give the proper experimental values, they are
frequently useful in predicting the incremental effect of a proposed design change or in ordering
various designs in terms of effectiveness [20]. This agreement with real flow, combined with their
geometric generality and low computational cost, has made numerical potential flow methods a
great design tools in several applications.

Boundary integral equation methods for solving potential flow problems became feasible with
the advent of digital computers. The method of Hess [6–9] was developed at Douglas Aircraft
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Company to solve flows about arbitrary three-dimensional lifting bodies by using the Newman
boundary condition. His method is based on constant source and quadratic dipole densities
distributed in the panel surface. Rubbert and Saaris [22] developed a similar method,however
instead of dipoles they use vortices in the camber line of the wing. The boundary integral method
proposed by Morino [17, 18] applies Green theorem and the Huygen’s principle to solve steady
and oscillatory, subsonic and linearized supersonic flows around arbitrary three-dimensional
bodies. His method applies potential constant in each grid element and an internal Dirichlet
boundary condition with Newman boundary condition in order to determine the dipole and
source intensities. Maskew [15, 16] developed a panel code called VSAERO. His code uses the
method of Morino to solve steady and unsteady subsonic flows. Ashby [2, 3] under contract
with NASA, developed the panel code PMARC. His code like VSAERO is a low order panel
method and uses the method of Morino. The method developed by Tinoco et al [24] at Boeing
Commercial Airplane Company uses high order surface singularities with continuity in the grid
element edges. The user can specify Newman boundary condition, Dirichlet boundary condition
or both. Woodward [25, 26] developed a method that uses surface and lines of singularities
and solve subsonic and supersonic steady flows. Singh et al [23] developed a boundary integral
that considers internal singularity distributions and Newman boundary condition. Morino and
Lemma [12, 19] and Gebhardt et al [13] developed an iterative boundary integral method to
solve the full potential equation for transonic flows. Romate [21] calculate the local truncation
errors in the approximations made in the usual boundary integral methods called panel methods.
Similar applications of the boundary integral method using hydrodynamic potential in Stokes
flow has been explored by Cunha et al. [4]. The present work presents a boundary integral
method in the same way of Morino’s method in order to simulate steady subsonic flow around
three-dimensional potential flow around arbitrary bodies. We have tested our boundary integral
code by calculating the pressure coefficient for several body geometries and comparing these
results with others theoretical results and experimental observations.

2 Governing equation

If the flow is considered to be irrotational, incompressible and inviscid then the governing equa-
tion of the flow is the well-known Laplace equation:

∇2Φ = 0 (1)

we decompose the harmonic potential as Φ = ϕD + ϕ∞, where ϕ∞ corresponds to the incident
flow that prevails even in the absence of the body, and ϕD is the disturbance potential due to
the body which decays to zero at large distance from the body. For an arbitrary body, we can
specify the kinematics boundary condition

UN = ni ·∇Φ = 0 (2)
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here ni is the unit vector normal to the body’s surface and UN is the component of the velocity
normal to the impenetrable boundaries. In addition, the disturbance created by the body vanish
at infinity, therefore

lim
r→∞∇φD = 0 (3)

where r is the relative distance between two points in the fluid. Equations (1), (2) and (3)
constitute the potential problem to be solved.

3 Integral representation of the flow

In this section we discuss a three-dimensional boundary integral method to solve Laplace equa-
tion in terms of singularities distributions on an arbitrary body surface. For this end, we first
shall show how to recast a differential formulation in an integral representation of the flow with
Green’s function theory.

3.1 Green’s functions of the three-dimensional Laplace equation

By definition, a three dimensional Green’s function satisfies the singular forced Laplace equation

∇2G (x, x0) + δ (x− x0) = 0 (4)

where δ is the three-dimensional delta distribution, and x0 is the location of the Green’s function,
also called the pole. The free-space Green’s function corresponds to an infinite domain of flow
with no interior boundaries. Solving Eq. (4) by using the 3D pair of Fourier transforms, we
found the Green’s function in the wave space k

G (k) = − 1

(2π)3/2

e−ik·x0

k2
(5)

Performing the inverse Fourier transform it gives [14]

G (x,x0) =
1

4πr
(6)

that corresponds to the fundamental solution of a potential flow in the free space.

3.2 Description of the flow problem

We start with the Green’s second identity [11] that states:
∫

S
(ϕ1∇φ2 − ϕ2∇φ1) · nidS =

∫

V

(
ϕ1∇2ϕ2 − ϕ2∇2ϕ1

)
dV (7)

and ϕ1 and ϕ2 are two scalar functions of position. V and S represents the volume and its
boundary surface of an arbitrary region of the flow and n is the unit vector normal to the
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surface S . Whether both ϕ1 and ϕ2 are harmonic the right hand side vanishes, yielding the
reciprocal relation for harmonic functions

∫

S
ϕ1∇φ2 · ndS =

∫

S
ϕ2∇φ1 · ndS (8)

Now, let’s consider an arbitrary body composed of a boundary SB, a wake SW and an outer
boundary S∞ at infinity as sketched in the Fig. 1. The unit vector ni or n is defined always
pointing outside the region of interest. So, ni = −n.
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Figure 1: Sketch of an arbitrary body for the description of the 3D potential flow

In Eq. (8) the surface integral is taken over all the boundaries. Consider ϕ1 as the funda-
mental solution G = 1/4πr, the unknown potential ϕ2 = Φi and S = SB ∪SW ∪S∞. According
to Fig. 1 Φi is the total potential in the domain V1 (i.e. inside the body) and ϕ1 is a potential
of a sink and is singular as r → 0. When exists a singularity located at x0 in the domain V1, it
is needed to be excluded from the region of integration. This singularity is bounded by a small
sphere of radius ε. Outside of the small sphere, in the remaining domain V1, the potential ϕ1

satisfies Laplace equation . The potential ϕ2 satisfies Laplace equation in all domain V1. So the
reciprocal relation, applied to the domain V1 subtracting the volume of the singularity, yields

∫

SB ,SW ,Sε

(G(r)∇Φi) · nidS −
∫

SB ,SW ,Sε

(Φi∇G(r)) · nidS = 0 (9)

where the free space Green’s functions corresponding to a point source and a potential dipole
are given respectively by G(r) = 1/4πr ; ∇G(r) = ∇ (1/r)/4π = −r

/
4πr3 . Here, r = x− x0

with x being an arbitrary point of the flow and x0 the location of the singularity.
Considering the integral over Sε containing the singularity, we write dS = ε2dΩ, where dΩ

is the differential solid angle, that is, the differential area of the sphere of unit radius, and using
G(r) = 1/4πε and ∇G(r) = −ni

/
4πε2 where the unit normal vector ni = r/ε, we can write for
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the limit as ε tends to zero that

lim
ε→0

∫

Sε

G(r)∇Φi · nidS = lim
ε→0

∫

Sε

1
4πε

∇Φi · niε
2dΩ =O(ε) → 0 (10)

lim
ε→0

∫

Sε

Φi∇G(r) · nidS = lim
ε→0

−
∫

Sε

Φi
1

4πε2
dΩε2 = −Φi(x0) (11)

Consequently, Eq. (9) reduces to

Φi(x0) =
∫

SB ,SW

G(r)∇Φi · ndS−
∫

SB ,SW

Φi∇G(r) · ndS (12)

The two integrals on the right-hand side represent a boundary distribution of the Green’s
function G(r) = 1/4πr and of the Green’s function ∇G(r) = (1/4π)∇ (1/r) ·n oriented perpen-
dicular to the boundaries of the control volume, amounting to boundary distributions of points
sinks and point dipoles. By analogy with corresponding results in the theory of electrostatics,
concerning distributions of electric charges and charges dipole, we called the two integrals in Eq.
(12) the single-layer and double-layer potential.

Now consider a situation when the flow of interest V2 occurs outside the boundary of SB∪SW

and the resulting total potential is Φ. For this flow the pole x0 (which is in the region V1 ) is
interior to SB ∪ SW , and applying Eq. (8) it leads to:

∫

S
G∇Φ · ndS −

∫

S
Φ∇G · ndS = 0 (13)

A more appropriated equation can be obtained in terms of the jump condition Φ− Φi and
its gradient on the boundaries. For this end, we subtract Eq. (12) to Eq. (13), to obtain

Φi(x0) = −
∫

SB

G(r)∇(Φ−Φi) · ndS +
∫

SB

(Φ− Φi)∇G(r) · ndS−

−
∫

SW

G(r)∇(Φ−Φi) · ndS +
∫

SW

(Φ− Φi)∇G(r) · ndS−

−
∫

S∞
G(r)∇Φ · ndS +

∫

S∞
Φ∇G(r) · ndS

(14)

The contribution of the S∞ integral in Eq. (11) is defined as the undisturbed potential
ϕ∞(x0), namely

ϕ∞(x0) = −
∫

S∞
G(r)∇Φ · ndS +

∫

S∞
Φ∇G(r) · ndS (15)

The wake is assumed such that the normal velocity is continuous so that ∂Φ/∂n−∂Φi/∂n = 0.
Also, the wake is considered sufficiently thin so that if the thickness of the wake tend to zero
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(δW → 0), yields

lim
δW→0

(
−

∫

SW

G(r)(∂Φ/∂n− ∂Φi/∂n)dS +
∫

SW

(Φ− Φi)∇G(r) · ndS

)
=

∫

SW

(ΦU − ΦL)∇G(r) · ndS

(16)

where ΦU is the corresponding value of the total potential in the upper of the wake and ΦL is
the total potential in the lower of the wake. Thus, Eq. (14) reduces to the boundary integral
representation for a three-dimensional potential flow in terms of surface singularities represented
by sinks and dipoles [10], namely

Φi(x0) = ϕ∞−
∫

SB

G(r)
∂

∂n
(Φ− Φi)dS +

∫

SB

(Φ− Φi)∇G(r) · ndS+
∫

SW

(ΦU − ΦL)∇G(r) · ndS.

(17)
Equation (17) determines the value of Φi(x0) in terms of the jumps µ = Φ−Φi called dipole

strength and σ = ∂Φ/∂n − ∂Φi/∂n called sink strength on the boundaries. Then the problem
is solved when the distribution of the sink and dipole is determined. In principle, an infinite
number of dipole and sink distributions will give the same external flow field, but different
internal flow fields. Turning Φi = ϕD

i + ϕ∞ and for convenience making ϕD
i = 0 (there is no

flow inside the body) Eq. (17) reduces to

−
∫

SB

G(r)(
∂Φ
∂n

− ∂ϕ∞

∂n
)dS +

∫

SB

ϕD∇G(r) · ndS +
∫

SW

(ΦU − ΦL)∇G(r) · ndS = 0 (18)

Using the boundary condition specified in Eq. (2) then:

σ =
∂Φ
∂n

− ∂ϕ∞

∂n
= UN − ∂ϕ∞

∂n
= −∂ϕ∞

∂n
(19)

Equation (19) is a Neumann kinematics boundary condition which determines the strength
of the sinks on the boundary. Thus the first integral on right hand side of Eq. (18) is solved
analytically using the constraint given in Eq. (19).

4 Numerical procedure

The potential boundary integral formulation presented in the previous section was recast in a
computer program to solve velocities and pressure distribution around an arbitrary body. The
basic problem of the present method is the numerical solution of Eq. (18). This requires an
evaluation of the integrals and an approximate representation of the body surface. The method
assumes that the body surface can be represented by a large number N of triangular and plane
quadrilateral elements, typically N = 102 to 10 3, over each of which the sink density and dipole
density are assumed constant. This number of grid elements was sufficient to make accurate and
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converging results Then the integral equation is replaced by a set of linear algebraic equation
for the value of the dipole density on the elements. A typical size of a grid element was taken
as 1/20 of the span. The value of the sink density is determined by the Eq. (19). The wake is
represented by an infinite vortex sheet emanated from the trailing edge of the lifting body and
the lines of vortex are considered straight. The chord makes with the wake an angle θ that is
assumed as an input for the numerical code.

The first and the second integrals in Eq. (18) were solved analytically. The grid elements are
plane and a local coordinate system was adopted in the center of the element with coordinate
z = 0. Thus the integrals were solved in the local coordinate along x and y. The unit vector
normal to the surface and the area of the grid element were calculated by cross products of
vectors in the plane of the element. For the contribution of a grid element about itself the
integrals are solved analytically at this particular limit. That means a singularity subtraction is
not needed in the present solution. The third integral in Eq. (18) represents the contribution of
the vortex sheet to the flow and the magnitude of the horseshoes vortex is equal to the difference
of the dipole intensities of the upper and lower panels at the trailing edge adjacent to the wake.
This represents physically the Kutta’s condition [7] and holds that the vortex filament cannot
end in a fluid (Helmholtz’s theorem).

Now we suppose a body surface represented by n grid elements and nw horseshoes vortex.
Then Eq. (18) can be re-written

n∑

k=1

µkCjk +
nW∑

k=1

µwkCjk = −
n∑

k=1

σkBjk j = 1, n (20)

where Bjk =
∫
Sk

GjkdSk and Cjk =
∫
Sk

Gjk
(xj−xk)·nk

|xj−xk|2 dSk.
Here, Cjk is the potential propagator Green’s function of the disturbance at the jth control

point corresponding to a constant µk dipole distribution on grid element k and also associated
with potential disturbance of a horseshoe vortex with magnitude µwk, whereas Bjk is the po-
tential propagator Green’s function of the potential disturbance at the jth control point due to
a constant σk sink distribution on panel k. The values of σk are known by Eq. (19) and the
values of µk and µwk are found by solving the linear system (20) using a Gauss-Seidel iterative
scheme.

To evaluate the velocities and pressures the method of the potential boundary integral has an
advantage that the computation of the surface velocity components and pressures is determinable
by the local properties of the disturbance potential and by the properties of the undisturbed
flow. A local second order distribution is then assumed using dipole values located at five panel
centers (a central panel and its four immediate neighbors). The local tangential velocity is then
obtained by direct differentiation and the pressure is found using the Bernoulli theorem. The
lift coefficient is determined by integration of the surface pressure distribution. The induced
drag coefficient is solved by using the integral formulation of the momentum equation in a
control volume that ends far downstream of the body (the well known Treffz plane), since the
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integration of the pressure cannot result in accurate values of the induced drag coefficient if the
grid is coarse [2]. Applying the momentum equation [5] and assuming steady flow and the wake
trail from the trailing edge in the direction of the free-stream yields

Di =
ρ

2

∫

wake
(ΦU − ΦL)

∂Φ
∂n

dl (21)

where ∂Φ/∂n is the velocity normal to the wake in the treffz plane and l is the length in the
spanwise direction. To solve the above equation, we consider control points in the middle of the
infinity vortex filaments with intensities ΦU − ΦL and calculate the velocities induced by the
filaments (wake).

5 Application of the method

In order to verify the accuracy of the numerical method, results of our code were compared with
analytical, experimental and numerical results based on different methods. Figure 2 compares
the analytic potential solution for the flow around a sphere with the numerical solution. The plot
shows that the pressure distributions from the computer simulation are in very good agreement
with the analytical prediction, cp = 1− (9/4)sin2θ, with a maximum error less than 5%. 
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Figure 2: Pressure coefficient around a sphere with radius of π/2. The diamonds represent the
numerical simulation with 800 grid elements and the continuous line represents the potential
analytical solution cp = 1− (9/4) sin2 θ

In addition, we apply our boundary integral scheme to solve the potential flow around the
hemisphere nose shown in Fig. 3. The results of the pressure coefficient corresponding to this
axisymmetric potential flow were compared with experimental observation carried out by Cole,
1951. We reproduce the results in our simulation accurate to 5%.

Another application of the potential boundary integral method explored here was the cal-
culation of the pressure distribution around a wing with an aspect ratio of 3 and a taper ratio
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Figure 3: Pressure coefficient along of the longitudinal axis of a body with hemispherical nose.
The dashed line represents the numerical simulation with 860 grid elements and the diamonds
represent the experimental measurements carried out by Cole, 1952 for Reynolds number 9 x 105

based on the body length.

of 0.5. The results are again compared with experimental data of Kolbe and Boltz, 1951 for a
Reynolds number of 4 x 106 based on the chord length. From the view of the three-dimensional
simulated wing shown in Fig. 4, we can see the presence of the leading edge swept back 48.5˚,
no twist and the sections are the NACA 64A10 in planes inclined 45˚ to the plane of the sym-
metry. Figure 4 shows a comparison between experimental and numerical pressure coefficients
in a section of 55% of the semi-span for angles of attack of 6˚ and 12˚. This plot shows a very
good agreement with the experimental results except near the leading edge in the lower surface
at high angles of attack where the maximum error is found to be close to 30%. The discrepancy
possibly occurs in this location because it is a highly swept wing and the code does not account
the leading edge vortex generated in such configuration. It should be important to note that this
is not a limitation of the method and we have made recent progress for incorporating the leading
edge vortex in the present boundary integral code. Another possibility for the discrepancy is
the presence of the boundary layer that is not account in the code. For a highly swept wing,
however, the spanwise velocity is considerable and consequently the boundary layer thickness is
thick sufficiently at tips to change the pressure at this location.

Figure 5 shows, for the wing shown in Fig. 4, the experimental measurements of the lift
coefficient and total drag coefficient for several angles of attack. Predictions of the boundary
integral method for the lift coefficient and for the induced drag coefficient (a contribution of the
total drag coefficient) were compared with experimental results and with the numerical results
of the vortex-lattice method developed by the authors [1]. In order to simulate a wing with
symmetric airfoil (NACA 64A10) by using the vortex-lattice method we consider the vortex
filaments (bound and trailing vortex) in a plane, i.e., with camber equal zero. We can see that
for angles of attack below 15˚, the predictions of the boundary integral method agree very well
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Figure 4: Pressure coefficient around a swept wing at 55% of the semi-span. The continuous
line and dashed line represent the numerical simulation with 1000 grid elements for angles of
attack of 6˚ and 12˚ respectively. The triangles and circles represent the experimental results
for angles of attack of 6˚ and 12˚ respectively and a Reynolds number of 4 x 106 based on the
chord length.
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Figure 5: Lift coefficient, drag coefficient and induced drag coefficient for a swept wing. The
continuous line represents the predictions of the boundary integral method with 1000 grid el-
ements, the dashed line represents the predictions of the vortex-lattice method with 406 grid
elements and the circles represent the experimental measurements with Reynolds number 4x106.
In the asymptotic limit of small angle of attack (α) the lift coefficient is fitted by the straight
line (1/20)α.

with the experimental measurements and with the predictions of the vortex-lattice method. For
small angle of attack (α ∼ 5o) the lift coefficient CL is fitted by the straight line CL = (1/20)
α. The small scattering observed between experimental and numerical predictions (typically
20%) in the plot of drag coefficient even at small angle of attack is a direct consequence of
the viscous drag on the total drag measured experimentally. It should be important to note
that the coefficient (1/20) is approximately two times smaller than the corresponding one for
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two-dimensional potential flow around a slender airfoil, i.e. CL = (π2/90) α.
Above 20˚ of angle of attack, the inaccuracy is due to the separation of the boundary layer

that is not account by the method. The induced drag prediction by the boundary integral
method is in agreement with the vortex-lattice method.

Figure 6 shows a picture of wind-tunnel in the Fluid Mechanics Laboratory at University of
Braśılia. The tunnel is subsonic constant total pressure for low to moderate Reynolds number
(typically an order of 105). The test section is a square of size 460mm. A test was conducted in
this wind-tunnel to measure the lift and drag forces of a rectangular wing with aspect ratio of
4. The wing also has a NACA 0012 section and it does not have twist.

 

         

(a)

 

. 

(b)

Figure 6: Experimental setup. (a) wind-tunnel at University of Braśılia and (b) wing
(NACA0012) simulated and tested.

For the geometry of wing shown in Fig. 6(b), the plots in Figure 7 present experimental
measurements of the lift coefficient and total drag coefficient for several angles of attack. The
Reynolds number used in theses experiments was 1.6 x 105. Predictions of the boundary integral
method for the lift coefficient and induced drag coefficient were compared with experimental
observations carried out by us and with numerical results based on a vortex-lattice method and
also with the classical lifting-line theory which gives the lift and induced drag coefficients in
terms of Fourier series [1]. In order to simulate a wing with airfoil NACA 0012 in the Prandtl’s
lifting-line theory we consider two-dimensional data (i.e. dCl/dα and α for Cl = 0) provided
by a 2-D panel method implemented by Alvarenga and Cunha [1]. Again, it is seen for angles
of attack below 12˚ that the boundary integral method reproduces in very good agreement
the mentioned results. However for angle of attack beyond 12˚ the method fails, because the
separation of the boundary layer has not been accounted by the theory. In addition, the plot in
Fig. 7 show that the induced drag prediction by the boundary integral method is in very good
agreement with vortex-lattice method and with lifting-line theory. The observed discrepancy
between experimental and numerical results for the drag coefficient is about 25% for an angle
of attack of 8o. This difference is fully attributed to the viscous contribution of the drag that it
is not considered in our numerical calculation. Whether however we subtracted from the total
drag coefficient given in the experiments the viscous contribution we found an error less that
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5%. Finally we see that for small angle of attack the lift coefficient is fitted by the straight
line CL=(13/200) α, that predicts values of CL about two times smaller than two-dimensional
theory. 
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Figure 7: Forces coefficients for an unswept wing. The continuous line represents the predictions
of the boundary integral method with 816 grid elements, the dashed line represents the predictions
of the vortex-lattice method with 336 grid elements, the dotted line represents the predictions of
the lifting-line theory with 60 stations along the span and the circles represent the experimental
measurements. The Reynolds number of the experiments was 1.6 x 105.

6 Conclusions

In this paper we have presented numerical results for three-dimensional potential flow by using
a boundary integral scheme. The simplicity of piecewise constant singularity grid elements
offer great flexibility for application to arbitrary bodies. Time is saving to calculate the on-
body velocities compared with another boundary integral formulations. The numerical scheme
capture the basic aspect of three-dimensional potential flows and create possibilities to study the
local aerodynamic characteristics of the flow. The lifting-line theory and vortex-lattice method
cannot provide details of the flow as rich as the boundary integral method. The low computing
cost and high accuracy makes it practical to apply the present method to problems requiring
iterative solutions, e.g., wake-relaxation for high-lift bodies, viscous-inviscid coupled boundary
layer calculations, time-stepping calculations for unsteady flows, iterative schemes for transonic
flows and optimization routines for design codes. All results given in our code were in very good
agreement with the experiments. So we are encouraged to look further.
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