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Euler-Bernoulli beams

Abstract

This paper is devoted to the new classes of analytical techniques
called the Tteration Perturbation Method (IPM) and Hamiltonian
Approach (HA) for solving the equation of motion governing the
nonlinear vibration of Fuler-Bernoulli beams subjected to the axial
loads. It has been found that the IPM and HA are very prolific,
rapid, functional and do not demand small perturbation and are
also sufficiently accurate to both linear and nonlinear problems in
engineering. Comparison of the results of these methods with
together and with the results of numerical solution reveals that the
IPM and HA are very effective and convenient, and can be easily
extended to other nonlinear systems so that can be found widely
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1 INTRODUCTION

Vibration analysis of the beams is an important issue in structural engineering applications such
as long span bridges, aerospace vehicles, automobiles and many other industrial usages. The dy-
namics of continuous or distributed parameter systems, such as beams, plates, and shells, are
governed by nonlinear partial-differential equations in space and time. These partial differential
equations and associated boundary conditions form an initial boundary-value problem (Bayat et
al., 2011a).

In general it is hard to find exact or closed-form solutions for this class of problems. Conse-
quently, approximate solutions of the original problem were sought. The study of nonlinear vibra-
tion equations solution has been applied by many researchers and various methods of solution
have been used (Bayat et al., 2011b). In recent years, much attention has been devoted to the
newly developed methods to construct an analytic solution for nonlinear vibration such as He’s
Homotopy Perturbation Method (HPM) (He, 2012; He, 2004; Bayat et al., 2012; Ganji, 2006;
Beléndez et al., 2007; Barari et al., 2008), Homotopy Analysis Method (HAM) (Bayat et al., 2012;
Liao, 2003; Ghotbi et al., 2009; Sohouli et al., 2010; Kimiaeifar et al., 2009), He’s Parameter-
Expansion Method (He, 2012; Bayat et al., 2012; He and Shou, 2007; Xu, 2007; Kimiaeifar et al.,
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2010a; Kimiaeifar et al., 2010b), He’s Variational Iteration Method (VIM) (He, 2012; Bayat et al.,
2012; He, 1997; He, 2000; Ganji et al., 2007; Barari et al., 2011; Rafei et al., 2007), He’s Energy
Balance Method (EBM) (He, 2002; Bayat et al., 2012; Jamshidi and Ganji, 2010; Ganji et al.,
2009; Fu et al., 2011; Afrouzi et al., 2011; Sfahani et al., 2011; Momeni et al., 2011; Zhang et al.,
2009a), He’s Amplitude Frequency Formulation Method (HAFF) (He, 2012; Bayat et al., 2012;
He, 2008; Ganji et al., 2010; Ren et al., 2009; Zhang, 2009b), Iteration Perturbation Method
(IPM) (Bayat et al., 2012; He, 2001; Ozis and Yildirim, 2009; Bayat et al., 2011b), Hamiltonian
Approach (HA) (He, 2012; Bayat et al., 2012; Bayat and Pakar, 2011c; Khan et al., 2010; Xu,
2010; Yazdi et al., 2010; Yildirim et al., 2011a; Yildirim et al., 2011b), Exp-Function Method
(He, 2012; Wu and He, 2007; Davodi et al., 2010), Adomian’s Decomposition Method (Sadighi
and Ganji, 2007; Safari et al., 2009; Biazar et al., 2010), Differential Transformation Method
(DTM) (Borhanifar and Abazari, 2010; Ghafoori et al., 2011; Joneidi et al., 2009), Variational
Approach (VA) (He, 2007; He, 2012; Bayat et al., 2012; Amani et al., 2011; Ganji et al., 2008;
Shou, 2009; Zhang, 2007), Harmonic Balance Method (HBM) (Beléndez et al., 2009), Parameter-
ized Perturbation Method (PPM) (He, 1999; He, 2006; He, 2012; Bayat et al., 2012; Ding and
Zhang, 2009; Jalaal, et al., 2011).

Among these methods, Iteration Perturbation Method (IPM) and Hamiltonian Approach
(HA) are considered to solve the nonlinear vibration of Euler-Bernoulli beams subjected to the
axial loads in this paper. The paper has been collocated as follows: first, the mathematical formu-
lation of the problem is considered, and then the basic concept of IPM and HA is described. Sub-
sequently, IPM and HA are studied to demonstrate the applicability and preciseness of these
methods; this is followed by a presentation of some comparisons between analytical and numerical
solutions. Eventually, it is showed that IPM and HA can converge to a precise cyclic solution for
nonlinear systems.

2 Mathematical Formulation

'1']4

Figure 1 A schematic of an Euler-Bernoulli beam subjected to an axial load.

Consider a straight beam of length L, a cross-section A, a mass per unit length g, moment of iner-
tia I , and modulus of elasticity E that subjected to an axial force of magnitude F, as shown in
Fig. 1. The equation of motion including of effects of mid-plane stretching is given by (Lestari
and Hanagud; 2001; Lacarbonara, 1997):
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Where C is the viscous damping coefficient, and U is a distributed load in the transverse direc-
tion.
Assume the non-conservative forces were equal to zero. Therefore, Eq. (1) can be written as fol-
lows:
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For convenience, the following non-dimensional variables are use:

~ ~ =2
xzi W:Vi’ t=t /EI4, in (3)
L R ML El

Where R = \/% is the radius of gyration of the cross-section. As a result, Eq. (2) can be written as

follows:
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Assuming W(X,t) = ¢(X)Q(t) where Q(t) is the first eigenmode of the beam (Tse et al.,
1978) and applying the Galerkin method, the equation of motion is obtained as follows:

Qt)+a Q)+ Q%(t)=0 (5)

Where @ = a; + Fa, and a;,a, and f are as follows:

e Jeeex Lo ox)oox
J'Ol¢2 dx i j:¢2 dx E¢2 dx

(6)

The Eq. (5) is the differential equation of motion governing non-linear vibration of Euler-
Bernoulli beams. The center of the beam is subjected to the following initial conditions:

Q(0)=A, Q(0)=0 (7)

Where Q4 denotes the non-dimensional maximum amplitude of oscillation.
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3. Solution Procedures

3.1 Basic concept of Iteration Perturbation Method (IPM)

The Iteration Perturbation Method was first proposed by He (2001). To illustrate its basic solu-
tion process, we consider the following general nonlinear oscillator:

U+f (u,t)=0 (8)
The variable y = % is introduced, and then Eq. (8) can be replaced by equivalent system
u(t)=y(t), )
y(®)=-f u.t). (10)
With assumption that its initial approximate can be expressed as
u(t)=Acos(wt) (11)
Where w is the angular frequency of the oscillation. Then:
u(t)=Asin(et)=y(t) (12)
Substituting Eq. (11) and Eq. (12) into the Eq. (10) yields:
y(t)=—f (Acos(wt),t) (13)
Using Fourier expansion series in the right hand of Eq. (13):
f (Acos(wt),t)= iazm cos[(2n+1)mt |=a cos(wt)+a,cos(3mt)+ ...  (14)
n=0
Substituting Eq. (14) into Eq. (13) yields:
y (t)=—( cos(at)+a,cos(3at )+ ... (15)

Integrating Eq. (15) yields:

o . _ﬁ . _
y(t)_—gsm(a)t) 3a)sm(3a)t) (16)
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Comparing Eq. (12) and (16):

3.2 Basic concept of Hamiltonian Approach (HA)

Previously, He (2002) had introduced the energy balance method based on collocation and Hamil-
tonian. Recently, in 2010 it was developed into the Hamiltonian approach (He, 2010). This ap-
proach is a kind of energy method with a vast application in conservative oscillatory systems. In
order to clarify this approach, the following general oscillator is considered (He, 2010):

U+f (u,u’,U')=0 (19)
With initial conditions:
u(0)=A, u(0)=0 (20)

Oscillatory systems contain two important physical parameters, i.e. the frequency w and the
amplitude of oscillation A. It is easy to establish a variational principle for Eq. (19), which reads:

T

3 (u):j;(_%uup(u )j dt e

Where T is period of the nonlinear oscillator Z—i =f.

In the Eq. (21), %‘llz is kinetic energy and F(u) potential energy, so the Eq. (21) is the least
Lagrangian action, from which we can immediately obtain its Hamiltonian, which reads

H(u)= %u’ ?+F (u)=constant (22)
From Eq. (22):
H_, (23)
oA

Introducing a new function, H(u), defined as:

T

H(u):j;(%uzﬂr(u)j dt:%TH (24)
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Eq. (23) is, then, equivalent to the following one

i[ﬁ}o 5
oA\ OT

0 oH
G_A[a(lla))]_o 20

From Eq. (26) approximate frequency—amplitude relationship of a nonlinear oscillator can be ob-
tained.

4 Runge-Kutta

The fourth RK (Runge-Kutta) method has been used for the numerical approach to verify the
analytic solution. This iterative algorithm was written in the form of the following formulae for
the second-order differential equation:

X=X, +%(h1+2h2+2h3+k4)

=

X; ., =X, +At (x’i S hl+h2+k3)j

Where At is the increment of the time and h,, h,, h; and h, and 4 h are determined from the
following formulae:

hy=f (X%, )K,

h,=f |t +£,xi +£x’i,x'i +£hl k,
2 2 2

At At .1 (28)

ho=f [t +2% x, +88 Latth,x, +Abh, |k,
2 2 "1'g 2

h, =f ti+At,xi+At><i,1At2h2,xi+Ath3jk.
2

The numerical solution starts from the boundary at the initial time, where the first value of
the displacement function and its first-order derivative are determined from initial condition.
Then, with a small time increment At, the displacement function and its first-order derivative at
the new position can be obtained using Eq. (27). This process continues to the end of the time
limit.
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5 Application
In this step application of IPM and HA is going to be indicated as follows:

5.1 Applying IPM

After introducing the variable y = %, and Substituting Q = A cos(wt) into the Eq. (5), it is ob-
tained:

y =—aAcos(wt)-BAcos’(mt) (29)

By using Fourier series expansion:

y =§a2nﬂcos[(2n +1)a)t]={—aA—(%ﬂA3j5(cos4(¢))d ¢ﬂ cos(at)+ ...  (30)

By integrating Eq. (30), and comparing with Eq. (12):

3A°
Oppy =4[O+ b (31)
According to Eq. (31), the following approximate solution is obtained:
3A?
Q(t)=Acos|,|a+ 4’8t (32)
5.2 Applying HA
Consider Eq. (5). Its Hamiltonian can be easily obtained, which reads:
1., 1 1
H=2Q°+>a Q’+=4Q"* 33
2 2 4 p (33)
Integrating Eq. (33) with respect to t from 0 to E:
1., 1 1
H=[4{Z0%+=Za Q2+= “Ldt 34
J {ZQ PR (34)

With assumption that the solution can be expressed as:
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Q(t)=Acos(at). (35)
Substitute it to Eq. (34), leads to:

.
H :L“(%Aza)zsinz(a) t)+%aA2cosz(a)t)+%,8A4cos4(a)t)j

:J-;(%AZ a)sinz(a)t)+ia A? COSZ(“”)*'L'B A cos’ (o t)}

2w 4 o
ST N EEp2 P p
8 8 w 64
(36)
Setting
S L B U I e Ly (37)
OA 8(1/ a)) 4 4 16
From Eq. (37), it is obtained:
3A’S
Wpp =4O+ (38)
4
According to Eq. (38), the following approximate solution is resulted:
2
Q(t)=Acos a+3ﬂ;ﬂt (39)

6 Results and Discussion

To illustrate and verify the accuracy of these new approximate methods, for the problem, a com-
parison of the time history oscillatory displacement responses with the numerical solution using
Runge-Kutta method is presented in Table 1. Figure 2 represents a comparison of analytical solu-
tion of Q(t) based on time between Iteration Perturbation Method (IPM) and Hamiltonian Ap-
proach (HA) for a = m/3,A =1/6, Figure 3 shows comparison of analytical solution of dQ/dt
based on time between Iteration Perturbation Method (IPM) and Hamiltonian Approach (HA)
for « =m/3,A =mn/6, and Figures 4 and 5 are the comparisons of frequency corresponding to var-
ious parameters of a and A .

The effect of different parameters a and A are studied in Figures 6 and 7 simultaneously. It is
evident that IPM and HA show an excellent agreement with the numerical solution and quickly
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convergent, and are valid for a wide range of vibration amplitudes and initial conditions. The
accuracy of the results shows that the IPM and HA can be potentiality used for the analysis of
strongly nonlinear oscillation problems accurately.

Table 1 Comparison between IPM and HA with Runge-Kutta method to various parameters of A | for t=3 (s),

a=mn, $=0.15.

A Qiex=Qua QrunreKutta Error percentage
/18 0.09968 0.099667 0.013
/9 0.201841 0.201743 0.048
n/6 0.308903 0.308571 0.107
/3 0.681306 0.6787 0.383
/2 1.164336 1.156396 0.686

i 3.126786 3.122405 0.140
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Figure 2 Comparison of analytical solution of Q(t) based on time with the numerical solution for a=r,
B=0.15, A=n/18.
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Figure 3 Comparison of analytical solution of dQ/dt based on time with the numerical solution for o=,
B=0.15, A=n/18.

Latin American Journal of Solids and Structures 11 (2014) 1049-1062



1058 M. Ahmadi et al. / Application of iteration perturbation method and Hamiltonian approach for nonlinear vibration of Euler-Bernoulli beams

18-: - '}1.

] i
164 o

{| A=1/2,1t/3,n/4, /6 5

g
-
w
2 25 3

Figure 4 comparison of frequency corresponding to various parameters of (o) for 3=0.15, A=n/2, /3, n/4,
/6.
Solid Line: TPM,
Solid Box: HA.
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Figure 5 Comparison of frequency corresponding to various parameters of amplitude (A) for 3=0.15, a=mn/2,
n/3, ©/4, n/6.
Solid Line: IPM,
Solid Box: HA.
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Figure 7 Sensitivity analysis of frequency for 3=0.15 in HA.

7 Conclusion

In this study, two new methods called Iteration Perturbation Method (IPM) and Hamiltonian
Approach (HA) have been used for non-natural oscillators. IPM and HA were utilized for analyz-
ing the equation of the motion governing the nonlinear vibration of Euler-Bernoulli beams. It has
been proved that the IPM and HA are very efficient, comfortable and sufficiently exact in engi-
neering problems. IPM and HA can be simply extended to nonlinear equation for the analysis of
nonlinear systems. The obtained results from the approximate analytical solutions are in excellent
agreement with the corresponding exact solutions.
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