NUMERICAL AND EXPERIMENTAL STUDY ON THE FORMATION AND DISPERSION PATTERNS OF MULTIPLE EXPLOSIVELY FORMED PENETRATORS

Main Article Content

JIANFENG LIU
YUAN LONG
CHONG JI
QUANJUN XU
FUYIN GAO
CHANGXIAO ZHAO

Abstract

THREE-DIMENSIONAL NUMERICAL SIMULATIONS AND EXPERIMENTS WERE PERFORMED TO EXAMINE THE FORMATION AND SPATIAL DISPERSION PAT-TERNS OF INTEGRAL MULTIPLE EXPLOSIVELY FORMED PENETRATORS (MEFP) WARHEAD WITH SEVEN HEMISPHERICAL LINERS. NUMERICAL RESULTS HAD SUCCESSFULLY DESCRIBED THE FORMATION PROCESS AND DISTRIBUTION PAT-TERN OF MEFP. A GROUP OF PENETRATORS CONSISTING OF A CENTRAL PE-NETRATOR SURROUNDED BY 6 PENETRATORS IS FORMED DURING THE FORMA-TION PROCESS OF MEFP AND MOVES IN THE DIRECTION OF AIMING POSITION. THE MAXIMUM DIVERGENCE ANGLE OF THE SURROUNDING PENETRATOR GROUP WAS 7.8°, AND THE DAMAGE AREA COULD REACH 0.16 M2 AT 1.2 M. THE LAWS OF PERFORATION DISPERSION PATTERNS OF MEFP WERE ALSO OBTAINED THROUGH A NONLINEAR FITTING OF THE PERFORATION INFORMATION ON THE TARGET AT DIFFERENT STANDOFFS. THE TERMINAL EFFECTS OF THE MEFP WARHEAD WERE PERFORMED ON THREE #45 STEEL TARGETS WITH A DIMENSION OF 160CM  160CM  1.5CM AT VARIOUS STANDOFFS (60, 80, AND 120 CM). THE SIMULATION RESULTS WERE VALIDATED THROUGH PENETRATION EXPERIMENTS AT DIFFERENT STANDS. IT HAS SHOWN EXCELLENT AGREEMENT BETWEEN SIMULATION AND EXPERIMENT RESULTS.

Article Details

Section
Articles