Design and evaluation of dual-resonant aggregates metaconcrete

Authors

DOI:

https://doi.org/10.1590/1679-78257392

Abstract

Metaconcrete is a newly manmade concrete where traditional aggregates are partially replaced by resonant aggregates. The metaconcrete slab can attenuate vibration in the specific frequency bandgap which are created by the locally resonant aggregates. To enhance the attenuation performance of metaconcrete slab, a dual-resonant aggregate was designed and embedded into the metaconcrete slab. Firstly, a mass-in-(mass-in-mass) analytical model is used to predict the bandgap characteristics of dual-resonant aggregates metaconcrete. Then, eigenfrequency investigation is conducted to acquire the dispersion curve of the periodic unit cell by using finite element software COMSOL Multiphysics. The effects of the mass and stiffness ratios parameters on the characteristics of bandgap are studied. The frequency responses of the dual-resonant aggregates metaconcrete reveal that the dual-resonant aggregates metaconcrete slab can acquire vibration wave mitigation in two designed frequency bands. The results offer a base for the optimal design of the metaconcrete slab for structural protections resist vibration loading.

Downloads

Published

2023-03-06

Issue

Section

Articles