An efficient Newton-Raphson based form-finding method for tensegrity structures with given strut forces and cable force density
DOI:
https://doi.org/10.1590/1679-78258162Abstract
Tensegrity structures are geometric nonlinear systems and statically and kinematically indeterminate structures that require an initial shape-finding procedure to establish a self-equilibrium state. This paper presents a shape-finding algorithm requiring structure topology, strut force, cable force density, and a random initial estimate of node coordinates as input. The equilibrium of the structure is achieved by zeroing the nonlinear static equilibrium in which the generalized nodal coordinates are chosen as variables. The modified Newton-Raphson method is used to solve the nonlinear equilibrium system by decreasing the nonlinear least square function to ensure global convergence. The stability of the self-balancing structure was evaluated using the properties of the geometric and tangent stiffness matrix. Various numerical examples are presented to illustrate the method's effectiveness for 2-d and 3-d tensegrity structures with multiple states of self-stress.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).